Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 5, pp 1186–1191 | Cite as

Crystal Structures of Ru(II) Complexes with Pyrazole and Pyrazolate Derivatives of tris(3,5-Dimethylpyrazolyl)Borohydride

  • D. Kharbani
  • S. D. Kurbah
  • E. K. RymmaiEmail author
Article
  • 16 Downloads

Abstract

Mononuclear cis,cis,trans-[Ru(CO)2Cl2(Pz*H)2] (1) and dinuclear [Ru2(DMSO)3Cl2(Pz*H)× (μ-H)(μ-Pz*)(μ-DMSO)] (2) complexes (DMSO = dimethylsulfoxide and Pz* = 3,5-dimethylpyrazolate) are obtained by the reaction of KTp* in methanol (KTp* = potassium tris(3,5-dimethylpyrazolyl)borate) with [Ru(CO)3Cl2]2 and cis-[RuCl2(DMSO)4] precursors, respectively. These complexes are obtained from the degradation of the scorpionate KTp* ligand and characterized by IR, 1H NMR, and X-ray crystallography.

Keywords

scorpionate degradation pyrazole pyrazolate-bridge Ru(II) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10947_2018_980_MOESM1_ESM.pdf (183 kb)
SUPPLEMENTARY MATERIALS TO: CRYSTAL STRUCTURES OF Ru(II) COMPLEXES WITH PYRAZOLE AND PYRAZOLATE DERIVATIVES OF TRIS(3,5-DIMETHYLPYRAZOLYL)BOROHYDRIDE

References

  1. 1.
    S. Trofimenko. J. Am. Chem. Soc., 1966, 88, 1842.CrossRefGoogle Scholar
  2. 2.
    S. Trofimenko. Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands. London: Imperial College Press, 1999.CrossRefGoogle Scholar
  3. 3.
    C. Pettinari. Scorpionates II: Chelating Borate Ligands. London: Imperial College Press, 2008.CrossRefGoogle Scholar
  4. 4.
    R. D. Adams and F. A. Cotton. (Eds.), Catalysis by Di– and Polynuclear Metal Cluster Complexes. New York: Wiley, 1988.Google Scholar
  5. 5.
    J. M. White, V. W. L. Ng, D. C. Clarke, P. D. Smith, M. K. Taylor, and C. G. Young. Inorg. Chim. Acta, 2009, 362, 4570–4577.CrossRefGoogle Scholar
  6. 6.
    S. A. Bieller, H. M. Bolte, J. W. Bats, M. Wagner, and H. W. Lerner. Inorg. Chim. Acta, 2006, 359, 1559–1572.CrossRefGoogle Scholar
  7. 7.
    T. F. S. Silva, M. D. Luisa, R. S. Martins, M. Fatima, C. Silva, M. L. Gkuznetsov, A. R. Fernandes, A. Silva, C. J. Pan, J. F. Lee, B. J. Hwang, and A. J. L. Pombeiro. Chem. Asian J., 2014, 9, 1132–1143.CrossRefGoogle Scholar
  8. 8.
    (a) P. K. L. Chan, K. A. Skov, B. R. James, and N. P. Farell. Int. J. Radiat. Oncol. Biol. Phys., 1986, 12, 1059–1062CrossRefGoogle Scholar
  9. (b).
    P. K. L. Chan, K. A. Skov, and B. R. James. Int. J. Radiat. Biol., 1987, 52, 49–55Google Scholar
  10. (c).
    P. K. L. Chan, P. K. H. Chan, D. C. Frost, B. R. James, and K. A. Skov. Can. J. Chem., 1988, 66, 117–122.CrossRefGoogle Scholar
  11. 9.
    D. Mulhern, Y. Lan, S. Brooker, J. F. Gallagher, H. Gorls, S. Rau, and J. G. Vos. Inorg. Chim. Acta, 2006, 359, 736–744.CrossRefGoogle Scholar
  12. 10.
    M. M. Taqui Khan, P. S. Roy, K. Venkatasubramanian, and N. H. Khan. Inorg. Chim. Acta, 1990, I76, 49–55.Google Scholar
  13. 11.
    M. I. Bruce, D. N. Sharrocks, and F. G. A. Stone. J. Organomet. Chem., 1971, 31, 269–273.CrossRefGoogle Scholar
  14. 12.
    P. J. Bailey, D. J. L. Gonzales, C. M. Cormack, S. Parsons, and M. Price. Inorg. Chim. Acta, 2003, 354, 61–67.CrossRefGoogle Scholar
  15. 13.
    D. H. Gibson, W. L. Hsu, A. L. Steinmetz, and B. V. Johnson. J. Organomet. Chem., 1981, 208, 89–102.CrossRefGoogle Scholar
  16. 14.
    I. P. Evans, A. Spencer, and G. Wilkinson. J. Chem. Soc. Dalton Trans., 1973, 204.Google Scholar
  17. 15.
    S. Trofimenko. J. Am. Chem. Soc., 1967, 89, 3170.CrossRefGoogle Scholar
  18. 16.
    Agilent. CrysAlis PRO. Agilent Technologies, Yarnton, England, 2013.Google Scholar
  19. 17.
    R. H. Blessing. Acta Crystallogr, Sect. A., 1995, 51, 33.CrossRefGoogle Scholar
  20. 18.
    G. M. Sheldrick. Acta Crystallogr., 2015, C71, 3.Google Scholar
  21. 19.
    C. J. Jones, J. A. Mc Clevetty, and A. S. Rothin. J. Chem. Soc. Dalton Trans., 1986, 109–111.Google Scholar
  22. 20.
    D. Kharbani, D. K. Deb, I. L. Mawnai, S. D. Kurbah, B. Sarkar, and E. K. Rymmai. J. Mol. Struct., 2017, 1133, 264–270.CrossRefGoogle Scholar
  23. 21.
    (a) L. M. Caldwell. Adv. Organomet. Chem., 2008, 56, 1CrossRefGoogle Scholar
  24. (b).
    M. Lail, K. A. Pittard, and T. B. Gunnoe. Adv. Organomet. Chem., 2008, 56, 95CrossRefGoogle Scholar
  25. (c).
    E. Becker, S. Pavlik, and K. Kirchner. Adv. Organomet. Chem., 2008, 56, 155CrossRefGoogle Scholar
  26. (d).
    I. R. Crossley. Adv. Organomet. Chem., 2008, 56, 199CrossRefGoogle Scholar
  27. (e).
    F. A. Jalon, A. Otero, and A. Rodriguez. J. Chem. Soc. Dalton Trans., 1995, 1629–1633.Google Scholar
  28. 22.
    F. Yraola, F. Albericio, M. Corbella, and M. Royo. Inorg. Chim. Acta, 2008, 361, 2455–2461.CrossRefGoogle Scholar
  29. 23.
    R. J. Abernethy, A. F. Hill, M. K. Smith, and A. C. Willis. Organometallics, 2009, 28, 6152–6159.CrossRefGoogle Scholar
  30. 24.
    Kazuo Nakamoto. Infrared and Raman spectra of Inorganic and Coordination compounds, 1986. 4th Edition, John Wiley and son, 1986.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Centre for Advanced Studies in ChemistryNorth-Eastern Hill UniversityShillongIndia

Personalised recommendations