Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 5, pp 1168–1175 | Cite as

Crystal Structure of Mononuclear Non-Heme Nikel(II) Octahedral Complex: [Ni(bqenH2)(bpy)](ClO4)2·0.125H2O

  • D. D. Narulkar
  • A. K. Srivastava
  • R. J. Butcher
  • S. N. Dhuri
Article
  • 12 Downloads

Abstract

The crystal structure of a mononuclear Ni(II) complex [Ni(bqenH2)(bpy)](ClO4)2·0.125H2O 1 (where bqenH2 is N,N′-bis(8-quinolyl)ethane-1,2-diamine, bpy = 2,2′-bipyridine) is reported here. The crystallographic data for 1 are as follows: monoclinic crystal system, P21/n space group, a = 17.3255(11), b = 10.6110(7), c = 34.328(2) Å, α = 90°, β = 93.9480(13)°, γ = 90°, V = 6295.8(7) Å3, Z = 4, dx = 1.541 mg/m3. The nickel(II) ion coordinates four N atoms of the tetradentate ligand bqenH2 and two N atoms of the auxiliary bidentate 2,2′-bipyridine ligand, resulting in a slightly distorted NiN6 octahedron with two perchlorates serving as charge balancing counter anions. The overall structure of 1 is stabilized by the presence of water of crystallization in the crystal lattice. The crystal structure shows two symmetrically identical octahedral NiN6 units in its asymmetric unit. The extensive hydrogen bonding network resulting in a supramolecular architecture is observed due to the N–H⋯O, O–H⋯O, O–H⋯Cl, and N–H⋯Cl interactions.

Keywords

nickel(II) single crystal X-ray crystallography bqenH2 2,2′-bipyridine hydrogen bonding centrosymmetric monoclinic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Nam. Acc. Chem. Res., 2015, 8, 2415.CrossRefGoogle Scholar
  2. 2.
    P. Barman, P. Upadhyay, A. S. Faponle, J. Kumar, S. S. Nag, D. Kumar, C. V. Sastri, and S. P. d. Visser. Angew. Chem. Int. Ed., 2016, 55, 11091.CrossRefGoogle Scholar
  3. 3.
    T. A. Jackson, J.–U. Rohde, M. S. Seo, C. V. Sastri, R. DeHont, A. Stubna, T. Ohta, T. Kitagawa, E. Munck, W. Nam, and Jr. L. Que. J. Am. Chem. Soc., 2008, 130, 12394.CrossRefGoogle Scholar
  4. 4.
    S. N. Dhuri, K.–B. Cho, Y. M. Lee, S. Y. Shin, J. H. Kim, D. Mandal, S. Shaik, and W. Nam. J. Am. Chem. Soc., 2015, 137, 8623.CrossRefGoogle Scholar
  5. 5.
    Y.–M. Lee, S. N. Dhuri, S. C. Sawant, J. Cho, M. Kubo, T. Ogura, S. Fukuzumi, and W. Nam. Angew. Chem. Int. Ed., 2009, 48, 1803.CrossRefGoogle Scholar
  6. 6.
    S. N. Dhuri, M. S. Seo, Y.–M. Lee, H. Hirao, Y. Wang, W. Nam, and S. Shaik. Angew. Chem. Int. Ed., 2008, 47, 3356.CrossRefGoogle Scholar
  7. 7.
    S. N. Dhuri, Y.–M. Lee, M. S. Seo, J. Cho, D. D. Narulkar, S. Fukuzumi, and W. Nam. Dalton Trans., 2015, 44, 7634.CrossRefGoogle Scholar
  8. 8.
    M. T. Kieber–Emmons, J. Annaraj, M. S. Seo, K. M. VaHeuvelen, T. Tosha, T. Kitagawa, T. C. Brunold, W. Nam, and C. G. Riordan. J. Am. Chem. Soc., 2011, 128, 14230.CrossRefGoogle Scholar
  9. 9.
    J. Cho, H. Y. Kang, L. V. Liu, and R. Sarangi. Chem. Sci., 2013, 4, 1502.CrossRefGoogle Scholar
  10. 10.
    J. Cho, R. Sarangi, J. Annaraj, S. Y. Kim, M. Kubo, T. Ogura, E. I. Solomon, and W. Nam. Nature Chem., 2009, 1, 568.CrossRefGoogle Scholar
  11. 11.
    K. C. Skyrianou, F. Perdih, I. Turel, D. P. Kessissoglou, and G. Psomas. J. Inorg. Biochem., 2010, 104, 740.CrossRefGoogle Scholar
  12. 12.
    L. R. Gomes, J. N. Low, M. A. A. Rocha, L. M. n. B. F. Santos, B. Schröder, P. Brandão, C. Matos, and J. Neves. J. Mol. Struct., 2011, 990, 86.CrossRefGoogle Scholar
  13. 13.
    S. Anitha, J. Karthikeyan, and A. N. Shetty. Indian J. Chem., 2013, 42A, 45.Google Scholar
  14. 14.
    E. Ramachandran, D. S. Raja, J. L. Mike, T. R. Wagner, M. Zeller, and K. Natarajan. RSC Advances, 2012, 2, 8515.CrossRefGoogle Scholar
  15. 15.
    L.–N. Zhu, D.–M. Kong, X.–Z. Li, G.–Y. Wang, J. Wang, and Y.–W. Jin. Polyhedron, 2010, 29, 574.CrossRefGoogle Scholar
  16. 16.
    C. N. Sudhamani, H. S. B. Naik, T. R. R. Naik, and M. C. Prabhakara. Spectrochim. Acta, Part A, 2009, 72, 643.CrossRefGoogle Scholar
  17. 17.
    A. E.–M. M. Ramadan. J. Mol. Struct., 2012, 1015, 56.CrossRefGoogle Scholar
  18. 18.
    K. C. Skyrianou, V. Psycharis, C. P. Raptopoulou, D. P. Kessissoglou, and G. Psomas. J. Inorg. Biochem., 2011, 105, 63.CrossRefGoogle Scholar
  19. 19.
    M. S. S. Babu, P. G. Krishna, K. S. Reddy, and G. H. Philip. Indian J. Chem., 2008, 47A, 1668.Google Scholar
  20. 20.
    R. P. Reddy, N. Raju, K. Rao, and A. Shilpa. Indian J. Chem., 2009, 48A, 761.Google Scholar
  21. 21.
    M. Pragathi and K. H. Reddy. Indian J Chem, 2013, 52A, 845.Google Scholar
  22. 22.
    P. K. Suganthy, R. N. Prabhu, and V. S. Sridevi. Inorg. Chim. Acta, 2016, 449, 127.CrossRefGoogle Scholar
  23. 23.
    M. Zhang, M.–T. Zhang, C. Hou, Z.–H. Ke, and T.–B. Lu. Angew. Chem. Int. Ed., 2014, 53, 13042.CrossRefGoogle Scholar
  24. 24.
    M. Sankaralingam, P. Vadivelu, E. Suresh, and M. Palaniandavar. Inorg. Chim. Acta, 2013, 407, 98.CrossRefGoogle Scholar
  25. 25.
    T. Nagataki, K. Ishii, Y. Tachi, and S. Itoh. Dalton Trans., 2007, 1120.Google Scholar
  26. 26.
    M. Balamurugan, R. Mayilmurugan, E. Suresh, and M. Palaniandavar. Dalton Trans., 2011, 40, 9413.CrossRefGoogle Scholar
  27. 27.
    S. Hikichi, K. Hanaue, T. Fujimura, H. Okuda, J. Nakazawa, Y. Ohzu, C. Kobayashi, and M. Akita. Dalton Trans., 2013, 42, 3346.CrossRefGoogle Scholar
  28. 28.
    J. Nakazawa, S. Terada, M. Yamada, and S. Hikichi. J. Am. Chem. Soc., 2013, 135, 6010.CrossRefGoogle Scholar
  29. 29.
    K. Nehru, S. J. Kim, I. Y. Kim, M. S. Seo, Y. Kim, S.–J. Kim, J. Kim, and W. Nam. Chem. Commun., 2007, 1, 4623.CrossRefGoogle Scholar
  30. 30.
    J. Yoon, S. A. Wilson, Y. K. Jang, M. S. Seo, K. Nehru, B. Hedman, K. O. Hodgson, E. Bill, E. I. Solomon, and W. Nam. Angew. Chem. Int. Ed., 2009, 48, 1257.CrossRefGoogle Scholar
  31. 31.
    J. England, G. J. P. Britovsek, N. Rabadia, and A. J. P. White. Inorg. Chem., 2007, 46, 672.CrossRefGoogle Scholar
  32. 32.
    S. Hong, Y.–M. Lee, K.–B. Cho, K. Sundaravel, J. Cho, M. J. Kim, W. Shin, and W. Nam. J. Am. Chem. Soc., 2011, 133, 11876.CrossRefGoogle Scholar
  33. 33.
    S. C. Sawant, X. Wu, J. Cho, K.–B. Cho, S. H. Kim, M. S. Seo, Y.–M. Lee, M. Kubo, T. Ogura, S. Shaik, and W. Nam. Angew. Chem., Int. Ed., 2010, 49, 8190.CrossRefGoogle Scholar
  34. 34.
    D. D. Narulkar, A. R. Patil, C. C. Naik, and S. N. Dhuri. Inorg. Chim. Acta, 2015, 427, 248.CrossRefGoogle Scholar
  35. 35.
    G. M. Sheldrick. A short history of SHELX. Act. Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112.CrossRefGoogle Scholar
  36. 36.
    S. S. Harmalkar, D. D. Narulkar, R. J. Butcher, M. S. Deshmukh, A. K. Srivastava, M. Mariappan, and S. N. Dhuri. Inorg. Chim. Acta (ICA_2018_687) (under revision).Google Scholar
  37. 37.
    I. García–Santos, J. Sanmartín, A. M. García–Deibe, M. Fondo, and E. Gómez. Inorg. Chim. Acta, 2010, 363, 193.CrossRefGoogle Scholar
  38. 38.
    D. Sertphon, D. J. Harding, P. Harding, and H. Adams. Polyhedron, 2011, 30, 2740.CrossRefGoogle Scholar
  39. 39.
    Q. Zhang, X. Q. Zhang, and Z. X. Wang. Dalton Trans., 2012, 41, 10453.CrossRefGoogle Scholar
  40. 40.
    A. McAuley and C. Xu. Inorg. Chem., 1992, 31, 5549.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. D. Narulkar
    • 1
  • A. K. Srivastava
    • 2
  • R. J. Butcher
    • 3
  • S. N. Dhuri
    • 1
  1. 1.Department of ChemistryGoa UniversityPanaji, GoaIndia
  2. 2.Department of ChemistryIndian Institute of Science Education and Research (IISER)PuneIndia
  3. 3.Department of ChemistryHoward UniversityWashington, DCUSA

Personalised recommendations