Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 5, pp 1158–1167 | Cite as

Tetranuclear Zn(II) and Mononuclear Nickel(II) Complexes Based on Asymmetric Salamo-Type Ligands: Syntheses, Crystal Structures, and Fluorescent Properties

  • X.-Y. Dong
  • G.-M. Du
  • W.-K. DongEmail author
  • G.-X. An
Article

Abstract

Two new complexes [{Zn(L1)(μ-OAc)Zn(CH3CHOHCH3)}2] and [Ni(L2)(H2O)(CH3OH)] with asymmetric Salamo-type ligands (H3L1 and H2L2) are synthesized and structurally characterized. In the Zn(II) and Ni(II) complexes, the terminal and central Zn(II) atoms are found to have slightly distorted square pyramidal and trigonal bipyramidal symmetries respectively, while the Ni(II) atom is hexa-coordinated and has a slightly distorted octahedral symmetry. Interestingly, a self-assembling continual zigzag 1D chain is formed by intermolecular hydrogen bonds in the Ni(II) complex. Furthermore, the Zn(II) and Ni(II) complexes in the ethanol solution show intense photoluminescence.

Keywords

asymmetric Salamo-type ligand transition metal complex synthesis crystal structure spectroscopic behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Q. Song, P. P. Liu, Z. R. Xiao, et al. Inorg. Chim. Acta, 2015, 438, 232–244.CrossRefGoogle Scholar
  2. 2.
    X. Q. Song, P. P. Liu, Y. A. Liu, et al. Dalton Trans., 2016, 45, 8154–8163.CrossRefGoogle Scholar
  3. 3.
    X. Q. Song, Y. Q. Peng, G. Q. Chen, et al. Inorg. Chim. Acta, 2015, 427, 13–21.CrossRefGoogle Scholar
  4. 4.
    P. P. Liu, L. Sheng, X. Q. Song, et al. Inorg. Chim. Acta, 2015, 434, 252–257.CrossRefGoogle Scholar
  5. 5.
    T. Katsuki. Coord. Chem. Rev., 1995, 140(32), 189–241.Google Scholar
  6. 6.
    T. Katsuki. J. Mol. Catal. A: Chem., 1996, 113(1), 87–107.Google Scholar
  7. 7.
    L. Canali and D. C. Sherrington. Chem. Soc. Rev., 1999, 28(21), 85–93.CrossRefGoogle Scholar
  8. 8.
    S. S. Sun, C. L. Stern, S. T. Nguyen, et al. J. Am. Chem. Soc., 2004, 126(20), 6314–6326.CrossRefGoogle Scholar
  9. 9.
    S. D. Bella and I. Fragala. Synth. Met., 2000, 115(12), 191–196.CrossRefGoogle Scholar
  10. 10.
    H. L. Wu, Y. C. Bai, Y. H. Zhang, et al. J. Coord. Chem., 2014, 67(18), 3054–3066.CrossRefGoogle Scholar
  11. 11.
    H. L. Wu, G. L. Pan, Y. C. Bai, et al. Res. Chem. Intermed., 2015, 41(6), 3375–3388.CrossRefGoogle Scholar
  12. 12.
    H. L. Wu, C. P. Wang, F. Wang, et al. J. Chin. Chem. Soc., 2015, 62(11), 1028–1034.CrossRefGoogle Scholar
  13. 13.
    H. L. Wu, Y. C. Bai, Y. H. Zhang, et al. Z. Anorg. Allg. Chem., 2014, 640(10), 2062–2071.CrossRefGoogle Scholar
  14. 14.
    H. L. Wu, G. L. Pan, Y. C. Bai, et al. J. Chem. Res., 2014, 38, 211–217.CrossRefGoogle Scholar
  15. 15.
    H. L. Wu, G. L. Pan, Y. C. Bai, et al. J. Photochem. Photobiol. B, 2014, 135, 33–43.CrossRefGoogle Scholar
  16. 16.
    C. Y. Chen, J. W. Zhang, Y. H. Zhang, et al. J. Coord. Chem., 2015, 68(6), 1054–1071.CrossRefGoogle Scholar
  17. 17.
    X. P. Yang and R. A. Jones. J. Am. Chem. Soc., 2005, 127(21), 7686/7687.Google Scholar
  18. 18.
    K. Ogawa and T. Fujiwara. Chem. Lett., 1999, 35(7), 657/658.Google Scholar
  19. 19.
    E. Hadjoudis, T. Dziembowska, and Z. Rozadowski. J. Photochem. Photobiol. A: Chem., 1999, 128(1–3), 97–99.Google Scholar
  20. 20.
    P. Cai, J. R. Hou, T. S. Liu, et al. Spectrochim. Acta Part A, 2008, 71(2), 584–587.CrossRefGoogle Scholar
  21. 21.
    S. Akine, Y. Morita, F. Utsuno, et al. Inorg. Chem., 2009, 48(22), 10670–10678.CrossRefGoogle Scholar
  22. 22.
    S. Akine, T. Taniguchi, W. K. Dong, et al. J. Org. Chem., 2005, 70(5), 1704–1711.CrossRefGoogle Scholar
  23. 23.
    S. Akine, T. Taniguchi, and T. Nabeshima. Inorg. Chem., 2004, 43(20), 6142–6144.CrossRefGoogle Scholar
  24. 24.
    S. Akine, W. K. Dong, and T. Nabeshima. Inorg. Chem., 2006, 45(12), 4677–4684.CrossRefGoogle Scholar
  25. 25.
    S. Akine, A. Akimoto, T. Shiga, et al. Inorg. Chem., 2008, 47(3), 875–885.CrossRefGoogle Scholar
  26. 26.
    S. Akine and T. Nabeshima. Inorg. Chem., 2005, 44(5), 1205–1207.CrossRefGoogle Scholar
  27. 27.
    P. A. Vigato and S. Tamburini. Coord. Chem. Rev., 2004, 248(17), 1717–2128.CrossRefGoogle Scholar
  28. 28.
    P. Wang and L. Zhao. Synth. React. Inorg. Met.–Org. Nano–Met. Chem., 2016, 46(7), 1095–1101.CrossRefGoogle Scholar
  29. 29.
    L. Zhao, X. T. Dang, Q. Chen, et al. Synth. React. Inorg. Met.–Org. Nano–Met. Chem., 2013, 43, 1241–1246.CrossRefGoogle Scholar
  30. 30.
    P. Wang and L. Zhao. Spectrochim. Acta Part. A, 2015, 135, 342–350.CrossRefGoogle Scholar
  31. 31.
    Y. X. Sun, L. Wang, X. Y. Dong, et al. Synth. React. Inorg. Met.–Org. Nano–Met. Chem., 2013, 43, 599–603.CrossRefGoogle Scholar
  32. 32.
    Y. X. Sun, S. T. Zhang, Z. L. Ren, et al. Synth. React. Inorg. Met.–Org. Nano–Met. Chem., 2013, 43, 995–1000.CrossRefGoogle Scholar
  33. 33.
    Y. X. Sun and X. H. Gao. Synth. React. Inorg. Met.–Org. Nano–Met. Chem., 2011, 41, 973–978.CrossRefGoogle Scholar
  34. 34.
    Y. X. Sun, L. Xu, T. H. Zhao, et al. Synth. React. Inorg. Met.–Org. Nano–Met. Chem., 2013, 43, 509–513.CrossRefGoogle Scholar
  35. 35.
    X. Y. Dong, Y. X. Sun, L. Wang, et al. J. Chem. Res., 2012, 387–390.Google Scholar
  36. 36.
    W. K. Dong, J. G. Duan, Y. H. Guan, et al. Inorg. Chim. Acta, 2009, 362(4), 1129–1134.CrossRefGoogle Scholar
  37. 37.
    W. K. Dong, C. Y. Zhao, Y. X. Sun, et al. Inorg. Chem. Commun., 2009, 12(3), 234–236.CrossRefGoogle Scholar
  38. 38.
    W. K. Dong, Y. X. Sun, Y. P. Zhang, et al. Inorg. Chim. Acta, 2009, 362(1), 117–124.CrossRefGoogle Scholar
  39. 39.
    W. K. Dong, Y. X. Sun, C. Y. Zhao, et al. Polyhedron, 2010, 29(9), 2087–2097.CrossRefGoogle Scholar
  40. 40.
    W. K. Dong, X. N. He, H. B. Yan, et al. Polyhedron, 2009, 28(8), 1419–1428.CrossRefGoogle Scholar
  41. 41.
    W. K. Dong, J. C. Ma, L. C. Zhu, et al. Cryst. Growth Des., 2016, 16(12), 6903–6914.CrossRefGoogle Scholar
  42. 42.
    W. K. Dong, L. C. Zhu, Y. J. Dong, et al. Polyhedron, 2016, 117, 148–154.CrossRefGoogle Scholar
  43. 43.
    G. M. Sheldrick. Acta Crystallogr., 2008, A64, 112–122.Google Scholar
  44. 44.
    A. Panja, N. Shaikh, P. Vojtišek, et al. New J. Chem., 2002, 26(8), 1025–1028.CrossRefGoogle Scholar
  45. 45.
    A. Anthonysamy and S. Balasubramanian. Inorg. Chem. Commun., 2005, 8(10), 908–911.CrossRefGoogle Scholar
  46. 46.
    J. A. Faniran, K. S. Patel, and J. C. Bailar. J. Inorg. Nucl. Chem., 1974, 36(7), 1547–1551.CrossRefGoogle Scholar
  47. 47.
    H. E. Smith. Chem. Rev., 1983, 83(4), 359–377.CrossRefGoogle Scholar
  48. 48.
    L. Gomes, E. Pereira, and B. Castro de. J. Chem. Soc., Dalton Trans., 2000, 8(8), 1373–1379.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.School of Chemical and Biological EngineeringLanzhou Jiaotong UniversityLanzhouP.R. China

Personalised recommendations