Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 5, pp 1148–1157 | Cite as

Structure Breaking/Making Property of Acefylline Piperazine in Aqueous, Aqueous Methanol, and Aqueous Ethylene Glycol Systems

  • S. MasoodEmail author
  • W. Rehman
  • Z. Khan
  • H. Arshad
  • S. Begum
  • A. Perveen
Article
  • 7 Downloads

Abstract

Densities of acefylline piperazine (AP) in aqueous, aqueous methanol, and aqueous ethylene glycol (10% v/v) systems are determined in the concentration range 0.04-0.14±0.001 mol/dm3 at different temperatures (298.15-318.15 K) with the interval of 5 K. The apparent molar volume (φv), the partial molar volume \((\phi_v^0)\), and the ion-ion interaction parameter (Sv) are calculated using the Masson equation. Partial molar expansibilities \((\phi_E^0)\), which indicate the presence or absence of the caging or packing effect, are also evaluated and discussed. The results are interpreted in terms of solute-solvent and solute-solute interactions of AP in aqueous, aqueous methanol, and aqueous ethylene glycol systems. The structure-breaking and structure-making properties of AP are inferred by the sign of Hepler′s criterion \((\partial^2\phi_v^0/\partial{T}^2)_p\), i.e. the second derivative of the partial molar volume with respect to the temperature at the constant pressure.

Keywords

density acefylline piperazine drug methanol ethylene glycol structure breaking/making 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. M. Mullett and E. P. Lai. Anal. Chem., 1998, 70, 3636–3641.CrossRefGoogle Scholar
  2. 2.
    A. Zlatkov, P. Peikov, N. Danchev, et al. Arch. Pharm., 1998, 331, 313–318.CrossRefGoogle Scholar
  3. 3.
    B. Tsvetkova, J. Tencheva, and P. Peikov. J. Foo. Drug Anal., 2003, 11, 191–194.Google Scholar
  4. 4.
    S. Sved, I. McGilveray, and N. Beaudoin. Biopharm. Drug Dispos., 1981, 2, 177–184.CrossRefGoogle Scholar
  5. 5.
    B. Tsvetkova, J. Tencheva, and P. Peikov. Acta Pharm., 2006, 56, 251–257.Google Scholar
  6. 6.
    P. Peikov, A. Zlatkov, and N. Belcheva. Dokladi Bulgarskata Akademia Naukite, 1995, 48, 29–32.Google Scholar
  7. 7.
    S. S. Dhondge, S. P. Zodape, and D. V. Parwate. J. Chem. Therm., 2012, 48, 207–212.CrossRefGoogle Scholar
  8. 8.
    S. S. Dhondge, R. L. Paliwal, N. S. Bhave, et al. J. Chem. Therm., 2012, 45, 114–121.CrossRefGoogle Scholar
  9. 9.
    V. Syal, A. Chauhan, and S. Chauhan. J. Pur. Appl. Ultrason., 2005, 27, 61–69.Google Scholar
  10. 10.
    S. Masood, R. Saeed, and S. R. Khan. J. Mater. Phys. Chem., 2013, 1, 69–75.Google Scholar
  11. 11.
    M. Shaikh, M. Shafiq, and M. Farooqui. J. Adv. Sci. Res., 2011, 2, 21–26.Google Scholar
  12. 12.
    V. Syal, S. Chauhan, and P. Sharma. J. India. Chem. Soc., 2005, 82, 602–607.Google Scholar
  13. 13.
    S. K. Thakur and S. Chauhan. J. Chem. Pharm. Res., 2011, 3, 657–664.Google Scholar
  14. 14.
    B. Meshram, P. Agrawal, H. Chandak, et al. Int. J. Emerg. Tech. Compu. App. Sci., 2013, 5, 369–373.Google Scholar
  15. 15.
    A. Q. Munir and M. Ali. Asian J. Biomed. Pharm. Sci., 2014, 4, 22–29.CrossRefGoogle Scholar
  16. 16.
    D. Takaiwa, E. Yamamoto, and K. Yasuoka. Nanoscale, 2015, 7, 12659–12665.CrossRefGoogle Scholar
  17. 17.
    A. Kaiser, O. Ismailova, A. Koskela, et al. J. Mol. Liq., 2014, 189, 20–29.CrossRefGoogle Scholar
  18. 18.
    A. B. Dikko, E. S. Eyube, and E. Eke. IOSR J. App. Phy., 2015, 7, 63–66.Google Scholar
  19. 19.
    A. Ali, P. Bidhuri, and S. Uzair. J. Saudi Chem. Soc., 2017, 21, S136–S142.Google Scholar
  20. 20.
    K. Rajagopal and S. Jayabalakrishnan. J. Chem. Therm., 2010, 42, 984–993.CrossRefGoogle Scholar
  21. 21.
    K. Mahmood, M. Shakeel, and M. Siddiq. Asian J. Chem., 2016, 28, 761–764.CrossRefGoogle Scholar
  22. 22.
    M. Iqbal and R. Verrall, Can. J. Chem., 1989, 67, 727–735.CrossRefGoogle Scholar
  23. 23.
    Y. Marcus and G. Hefter. Chem. Rev., 2004, 104, 3405–3452.CrossRefGoogle Scholar
  24. 24.
    A. Ali, S. Hyder, S. Sabir, et al. J. Chem. Therm., 2006, 38, 136–143.CrossRefGoogle Scholar
  25. 25.
    R. Saeed, S. Masood, M. Ashfaq, et al. J. Chem. Eng. Data, 2009, 54, 3125–3129.CrossRefGoogle Scholar
  26. 26.
    D. O. Masson. XXVIII. Th. London, Edinburgh, Dublin Philosophical Magazine J. Sci., 1929, 8, 218–235.CrossRefGoogle Scholar
  27. 27.
    V. K. Dakua, B. Sinha, and M. N. Roy. Phys. Chem. Liq., 2007, 45, 549–560.CrossRefGoogle Scholar
  28. 28.
    F. J. Millero. J. Phys. Chem., 1969, 73, 2417–2420.CrossRefGoogle Scholar
  29. 29.
    H. S. Frank and W.–Y. Wen. Discuss. Faraday Soc., 1957, 24, 133–140.CrossRefGoogle Scholar
  30. 30.
    H. S. Frank. J. Chem. Phys., 1945, 13, 493–507.CrossRefGoogle Scholar
  31. 31.
    H. L. Freidman and C. V. Krishnan. (F. Franks Ed.) Water: A comprehensive Treatise. Plenum Press, New York, 1973.Google Scholar
  32. 32.
    Y. Li, Y.–H. Li, F.–A. Wang, et al. J. Chem. Therm., 2013, 66, 14–21.CrossRefGoogle Scholar
  33. 33.
    J. Zhang, P. Zhang, K. Ma, et al. Sci. China, Ser. B: Chem., 2008, 51, 420–426.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. Masood
    • 1
    Email author
  • W. Rehman
    • 1
  • Z. Khan
    • 1
  • H. Arshad
    • 2
  • S. Begum
    • 1
  • A. Perveen
    • 1
  1. 1.Department of ChemistryUniversity of KarachiKarachiPakistan
  2. 2.Department of Food Science and TechnologyUniversity of KarachiKarachiPakistan

Personalised recommendations