Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 5, pp 1102–1113 | Cite as

Tautomerization Reaction, Experimental and Theoretical Characterizations of the N,N′-Dipyridoxyl(4-Methyl-1,2-Phenylenediamine) Schiff Base and its Cu(II) Complex

  • M. Yavari
  • S. A. BeyramabadiEmail author
  • A. Morsali
  • M. R. Bozorgmehr
Article
  • 20 Downloads

Abstract

Herein, the tetradentate N,N′-dipyridoxyl(4-methyl-1,2-phenylenediamine) [=H2L] Schiff base and its Cu(II) salen complex [Cu(L)] are newly synthesized and characterized by IR, NMR and mass spectroscopies together with the elemental analysis. In addition, their geometrical parameters, assignment of their IR bands and NMR chemical shifts of the Schiff base are calculated using density functional theory (DFT) methods. Natural bond orbital analyses were performed at the same computational level, too. In the optimized geometry of the free ligand the aromatic rings are not in the same plane. The structure of the complex is more planar, where the dianionic Schiff-base acts as a tetradentate ligand in the N,N,O,Omanner. Two phenolic oxygen atoms and two azomethine nitrogen atoms occupy four coordination positions of the square complex. The DFT-calculated results are in good agreement with the experimental values, confirming the suitability of the optimized geometries for the Schiff base and its Cu(II) complex.

Keywords

synthesis Schiff base pyridoxal DFT copper assignment NBO tautomerization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Keskioğlu, A. B. Gündüzalp, S. Cete, F. Hamurcu, and B. Erk. Spectrochim. Acta, Part A, 2008, 70, 634.CrossRefGoogle Scholar
  2. 2.
    H. Sharghi and M. A. Nasseri. Bull. Chem. Soc. Jpn., 2003, 76, 137.CrossRefGoogle Scholar
  3. 3.
    U. C. Saha, K. Dhara, B. Chattopadhyay, S. K. Mandal, S. Mondal, S. Sen, M. Mukherjee, S. VaSmaalen, and P. Chattopadhyay. Org. Lett., 2011, 13, 4510.CrossRefGoogle Scholar
  4. 4.
    M. Shakir, M. Azam, Y. Azim, S. Parveen, and A. U. Khan. Polyhedron, 2007, 26, 5513.CrossRefGoogle Scholar
  5. 5.
    A. B. Gündüzalp, İ. Özsen, H. Alyar, S. Alyar, and N. Özbek. J. Mol. Struct., 2016, 1120, 259.CrossRefGoogle Scholar
  6. 6.
    W. Singh and B. Dash. Pesticides, 1988, 22, 33.Google Scholar
  7. 7.
    S. Β. Desai, P. Desai, and K. Desai. Heterocycl. Commun., 2001, 7, 83.CrossRefGoogle Scholar
  8. 8.
    L. Li, Z. Li, K. Wang, S. Zhao, J. Feng, J. Li, P. Yang, Y. Liu, L. Wang, and Y. Li. J. Agric. Food Chem., 2014, 62, 11080.CrossRefGoogle Scholar
  9. 9.
    F. Aydogan, N. Öcal, Z. Turgut, and C. Yolacan. Bull. Korean Chem. Soc., 2001, 22, 476.Google Scholar
  10. 10.
    J. Mondal, S. Sreejith, P. Borah, and Y. Zhao. ACS Sustainabl. Chemistry & Engineering, 2014, 2, 934.CrossRefGoogle Scholar
  11. 11.
    M. H. Habibi, M. Montazerozohori, A. Lalegani, R. W. Harrington, and W. Clegg. J. Fluorin. Chem., 2006, 127, 769.CrossRefGoogle Scholar
  12. 12.
    P. Ekmekcioglu, N. Karabocek, S. Karabocek, and M. Emirik. J. Mol. Struct., 2015, 1099, 189.CrossRefGoogle Scholar
  13. 13.
    A. El–Sonbati, M. Diab, A. El–Bindary, G. Mohamed, and S. M. Morgan. Inorg. Chim. Acta, 2015, 430, 96.CrossRefGoogle Scholar
  14. 14.
    A. El–Sonbati, M. Diab, A. El–Bindary, and S. M. Morgan. Spectrochim. Acta, Part A, 2014, 127, 310.CrossRefGoogle Scholar
  15. 15.
    M. Diab, A. El–Sonbati, A. El–Bindary, and A. Barakat. Spectrochim. Acta, Part A, 2013, 116, 428.CrossRefGoogle Scholar
  16. 16.
    A. El–Sonbati, I. El–Deen, and M. El–Bindary. J. Mol. Liq., 2016, 215, 612.CrossRefGoogle Scholar
  17. 17.
    U. Mcdonnell, M. R. Hicks, M. J. Hannon, and A. Rodger. J. Inorg. Biochem., 2008, 102, 2052.CrossRefGoogle Scholar
  18. 18.
    M. Shebl. Spectrochim. Acta, Part A, 2014, 117, 127.CrossRefGoogle Scholar
  19. 19.
    R. Patel, N. Singh, and V. Gundla. Polyhedron, 2006, 25, 3312.CrossRefGoogle Scholar
  20. 20.
    L. A. Saghatforoush, A. Aminkhani, and F. Chalabian. Transition Met. Chem. (London), 2009, 34, 899.CrossRefGoogle Scholar
  21. 21.
    J. BergJL and L. Stryer. Biochemistry. New York: WH Freeman and Company, 2002.Google Scholar
  22. 22.
    V. M. Leovac, M. D. Joksović, V. Divjaković, L. S. Jovanović, Ž. Šaranović, and A. Pevec. J. Inorg. Biochem., 2007, 101, 1094.CrossRefGoogle Scholar
  23. 23.
    H. Brurok, J. H. Ardenkjær–Larsen, G. Hansson, S. Skarra, K. Berg, J. O. Karlsson, I. Laursen, and P. Jynge. Biochem. Biophys. Res. Commun., 1999, 254, 768.CrossRefGoogle Scholar
  24. 24.
    S. Beyramabadi, A. Morsali, and A. Shams. J. Struct. Chem., 2015, 56(2), 243.Google Scholar
  25. 25.
    H. Eshtiagh–Hosseini, M. R. Housaindokht, S. A. Beyramabadi, S. Beheshti, A. A. Esmaeili, M. J. Khoshkholgh, and A. Morsali. Spectrochim. Acta, Part A, 2008, 71, 1341.CrossRefGoogle Scholar
  26. 26.
    S. Beyramabadi, A. Morsali, S. Vahidi, M. Khoshkholgh, and A. Esmaeili. J. Struct. Chem., 2012, 53(3), 460.Google Scholar
  27. 27.
    S. Beyramabadi, A. Morsali, M. Khoshkholgh, and A. Esmaeili. Spectrochim. Acta, Part A, 2011, 83, 467.CrossRefGoogle Scholar
  28. 28.
    H. Eshtiagh–Hosseini, M. R. Housaindokht, S. A. Beyramabadi, S. H. M. Tabatabaei, A. A. Esmaeili, and M. J. Khoshkholgh. Spectrochim. Acta, Part A, 2011, 78, 1046.CrossRefGoogle Scholar
  29. 29.
    T. Toozandejani, S. A. Beyramabadi, H. Chegini, M. Khashi, A. Morsali, and M. Pordel. J. Mol. Struct., 2017, 1127, 15.CrossRefGoogle Scholar
  30. 30.
    C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1988, 37, 785.CrossRefGoogle Scholar
  31. 31.
    M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery Jr, T. Vreven, K. Kudin, and J. Burant. Inc., Pittsburgh, PA, 2003, 12478.Google Scholar
  32. 32.
    P. J. Hay and W. R. Wadt. J. Chem. Phys., 1985, 82, 299.CrossRefGoogle Scholar
  33. 33.
    R. Ditchfield. Mol. Phys., 1974, 27, 789.CrossRefGoogle Scholar
  34. 34.
    D. C. Young. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems. Wiley Online Library, 2001.CrossRefGoogle Scholar
  35. 35.
    G. Zhurko and D. Zhurko. URL: http://www.chemcraftprog.com, 2009.Google Scholar
  36. 36.
    M. Kabak, A. Elmali, Y. Elerman, and T. Durlu. J. Mol. Struct., 2000, 553, 187.CrossRefGoogle Scholar
  37. 37.
    J. D. Crane, L. C. Emeleus, D. Harrison, and P. A. Nilsson. Inorg. Chim. Acta, 2004, 357, 3407.CrossRefGoogle Scholar
  38. 38.
    A. Garoufis, S. Kasselouri, C. P. Raptopoulou, and A. Terzis. Polyhedron, 1998, 18, 585.CrossRefGoogle Scholar
  39. 39.
    S. Noor, S. Kumar, S. Sabir, R. W. Seidel, and R. Goddard. Acta Crystallogr., Sect. E: Crystallogr. Commun., 2015, 71, m205.Google Scholar
  40. 40.
    H. Kargar, R. Kia, T. Shakarami, and M. N. Tahir. Acta Crystallogr. Sect. E: Struct. Rep. Online, 2012, 68, m752.Google Scholar
  41. 41.
    H. Kargar, R. Kia, F. Ganji, and V. Mirkhani. Acta Crystallogr. Sect. E: Struct. Rep. Online, 2012, 68, m1135.Google Scholar
  42. 42.
    M. Niu, S. Fan, K. Liu, Z. Cao, and D. Wang. Acta Crystallogr. Sect. E: Struct. Rep. Online, 2010, 66, m77.Google Scholar
  43. 43.
    A. Ghaemi, S. Rayati, E. Elahi, S. W. Ng, and E. R. Tiekink. Acta Crystallogr. Sect. E: Struct. Rep. Online, 2011, 67, m1445.Google Scholar
  44. 44.
    N. Giricheva, G. Girichev, N. Kuzmina, Y. S. Medvedeva, and A. Y. Rogachev. J. Struct. Chem., 2009, 50(1), 52.Google Scholar
  45. 45.
    N. Tverdova, N. Giricheva, G. Girichev, N. Kuz′mina, O. Kotova, and A. Zakharov. Russ. J. Phys. Chem. A, 2009, 83, 2255.CrossRefGoogle Scholar
  46. 46.
    N. Tverdova, E. D. Pelevina, N. I. Giricheva, G. V. Girichev, N. P. Kuzmina, and O. V. Kotova. Struct. Chem., 2011, 22, 441.CrossRefGoogle Scholar
  47. 47.
    N. Tverdova, E. Pelevina, N. Giricheva, G. Girichev, N. Kuzmina, and O. Kotova. J. Mol. Struct., 2012, 1012, 151.CrossRefGoogle Scholar
  48. 48.
    M. B. Gzaiel, A. Oueslati, I. Chaabane, and M. Gargouri. J. Mol. Struct., 2016, 1122, 280.CrossRefGoogle Scholar
  49. 49.
    Z. Moosavi–Tekyeh and N. Dastani. J. Mol. Struct., 2015, 1102, 314.CrossRefGoogle Scholar
  50. 50.
    G. Mariappan and N. Sundaraganesan. J. Mol. Struct., 2014, 1074, 51.CrossRefGoogle Scholar
  51. 51.
    R. Mathammal, K. Sangeetha, M. Sangeetha, R. Mekala, and S. Gadheeja. J. Mol. Struct., 2016, 1120, 1.CrossRefGoogle Scholar
  52. 52.
    A. Kanaani, D. Ajloo, G. Grivani, A. Ghavami, and M. Vakili. J. Mol. Struct., 2016, 1112, 87.CrossRefGoogle Scholar
  53. 53.
    Y. B. Alpaslan, H. Gökce, G. Alpaslan, and M. Macit. J. Mol. Struct., 2015, 1097, 171.CrossRefGoogle Scholar
  54. 54.
    N. J. Sanmartı, A. M. Gaa–Deibe, M. Fondo, D. Navarro, and M. R. Bermejo. Polyhedron, 2004, 23, 963.CrossRefGoogle Scholar
  55. 55.
    D. Ware, D. Mackie, P. Brothers, and W. Denny. Polyhedron, 1995, 14, 1641.CrossRefGoogle Scholar
  56. 56.
    A. A. Khandar, B. Shaabani, F. Belaj, and A. Bakhtiari. Polyhedron, 2006, 25, 1893.CrossRefGoogle Scholar
  57. 57.
    M. Snehalatha, C. Ravikumar, I. H. Joe, N. Sekar, and V. Jayakumar. Spectrochim. Acta, Part A, 2009, 72, 654.CrossRefGoogle Scholar
  58. 58.
    N. Tezer and N. Karakus. J. Mol. Model., 2009, 15, 223.CrossRefGoogle Scholar
  59. 59.
    N. Özdemir, M. Dinçer, A. Çukurovalı, and O. Büyükgüngör. J. Mol. Model., 2009, 15, 1435.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. Yavari
    • 1
  • S. A. Beyramabadi
    • 1
    Email author
  • A. Morsali
    • 1
  • M. R. Bozorgmehr
    • 1
  1. 1.Department of Chemistry, Mashhad BranchIslamic Azad UniversityMashhadIran

Personalised recommendations