Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 5, pp 1095–1101 | Cite as

Investigation of Simultaneous Cation-Π and Π–Π Stacking Interactions on Graphene and Some Bent Graphenes as Curved Surfaces of Carbon Nanohorns

  • P. KarimiEmail author
Article
  • 7 Downloads

Abstract

Computational quantum chemistry methods are used to study simultaneous cation-π and π–π stacking interactions with a graphene sheet and on the inner and outer faces of some bent graphenes as curved surfaces of carbon nanohorns (CNHs). Structural parameters and energy data of ternary benzene–graphene–Na+ and benzene-bent graphene–Na+ complexes are studied. Also, effects of charge transfer and aromaticity are estimated to determine how changes in the structure influences the above interactions. The results indicate that the graphene curvature leads to structural changes affecting simultaneous interactions of the Na+ cation and benzene with bent graphenes. Also, the results show that although π–π stacking is a weak interaction, it can manipulate the order of binding energies in complexes involving both mentioned interactions and affect drug delivery abilities of these systems.

Keywords

bent graphene carbon nanohorns cation-π π–π stacking aromaticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Iijima, M. Yudasaka, R. Yamada, et al. Chem Phys Lett., 1999, 309, 165–170.CrossRefGoogle Scholar
  2. 2.
    S. Iijima and T. Ichihashi. Nature, 1993, 363, 603–605.CrossRefGoogle Scholar
  3. 3.
    S. Utsumi, J. Miyawaki, H. Tanaka, et al. J. Phys. Chem. B, 2005, 109, 14319–14324.CrossRefGoogle Scholar
  4. 4.
    M. Harada, T. Inagaki, S. Bandow, et al. Carbon, 2008, 46, 766–772.CrossRefGoogle Scholar
  5. 5.
    R. Yuge, M. Yudasaka, K. Yoyama, et al. Carbon, 2012, 50, 1925–1932.CrossRefGoogle Scholar
  6. 6.
    E. Bekyarova, K. Murata, M. Yudasaka, et al. J. Phys. Chem. B, 2003, 107, 4681–4684.CrossRefGoogle Scholar
  7. 7.
    Y. Hattori, H. Hanoh, F. Okino, et al. J. Phys. Chem. B, 2004, 108, 9614–9618.CrossRefGoogle Scholar
  8. 8.
    C. M. Yang, Y. J. Kim, and M. Endo. J. Am. Chem. Soc., 2007, 129, 20/21.CrossRefGoogle Scholar
  9. 9.
    A. Izadi–Najafabadi, T. Yamada, D. N. Futaba, et al. ACS Nano, 2011, 5, 811–819.CrossRefGoogle Scholar
  10. 10.
    R. Yuge, T. Manako, K. Nakahara, et al. Carbon, 2012, 50, 5569–5573.CrossRefGoogle Scholar
  11. 11.
    J. Zhang, J. Lei, C. Xu, et al. Anal. Chem., 2010, 82, 1117–1122.CrossRefGoogle Scholar
  12. 12.
    T. Murakami, K. Ajima, J. Miyawaki, et al. Mol. Pharm., 2004, 1, 399–405.CrossRefGoogle Scholar
  13. 13.
    K. Ajima, M. Yudasaka, T. Murakami, et al. Mol. Pharm., 2005, 2, 475–480.CrossRefGoogle Scholar
  14. 14.
    M. Zhang, T. Murakami, K. Ajima, et al. Proc. Natl. Acad. Sci. USA, 2008, 105, 14773–14778.CrossRefGoogle Scholar
  15. 15.
    M. F. Zhang, M. Yudasaka, K. Ajima, et al. ACS Nano, 2007, 1, 265–272.CrossRefGoogle Scholar
  16. 16.
    A. S. D. Sandanayaka, O. Ito, M. F. Zhang, et al. Adv. Mater., 2009, 21, 4366–4371.CrossRefGoogle Scholar
  17. 17.
    G. Mountrichas, T. Ichihashi, S. Pispas, et al. J. Phys. Chem. C, 2009, 113, 5444–5449.CrossRefGoogle Scholar
  18. 18.
    W. Huang, J. F. Zhang, H. C. Dorn, et al. Bioconjugate Chem., 2011, 22, 1012–1016.CrossRefGoogle Scholar
  19. 19.
    X. B. Fan, J. Tan, and G. L. Zhang. Nanotechnology, 2007, 18, 1–6.CrossRefGoogle Scholar
  20. 20.
    J. Miyawaki, M. Yudasaka, T. Azami, et al. ACS Nano, 2008, 2, 213–226.CrossRefGoogle Scholar
  21. 21.
    K. Ajima, M. Yudasaka, T. Murakami, et al. Mol. Pharm, 2005, 2, 475–480.CrossRefGoogle Scholar
  22. 22.
    K. Ajima, T. Murakami, Y. Mizoguchi, et al. ACS Nano, 2008, 2, 2057–2064.CrossRefGoogle Scholar
  23. 23.
    J. X. Xu, M. Yudasaka, S. Kouraba, et al. Chem. Phys. Lett., 2008, 461, 189–192.CrossRefGoogle Scholar
  24. 24.
    T. Murakami, H. Sawada, G. Tamura, et al. Nanomedicine, 2008, 3, 453–463.CrossRefGoogle Scholar
  25. 25.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford CT, 2009.Google Scholar
  26. 26.
    Y. Zhao, N. E. Schultz, and D. G. Truhlar. J. Chem. Theor. Comput., 2006, 2, 364–382.CrossRefGoogle Scholar
  27. 27.
    P. V. R. Schleyer, C. Maerker, and A. Dransfeld. J. Am. Chem. Soc., 1996, 118, 6317/6318.CrossRefGoogle Scholar
  28. 28.
    Z. Chen, C. S. Wannere, C. Corminboeuf, et al. J. Chem. Rev., 2005, 105, 3842–3888.CrossRefGoogle Scholar
  29. 29.
    K. Wolinski, J. F. Hinto, and P. Pulay. J. Am. Chem. Soc., 1990, 112, 8251–8260.CrossRefGoogle Scholar
  30. 30.
    HyperChem® for Windows and NT, Hypercube. Inc., Publication HC50–00–04–00 October, 1996.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of ZabolZabolIran

Personalised recommendations