Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 5, pp 1088–1094 | Cite as

A Density Functional Investigation of Geometrical and Electronic Structures, Charge Transfer, and Photoluminescent Property of a Zinc(II) Complex with 5-Amino-2-(1H-Benzoimidazol-2-yl)-Phenol

  • Y.-P. Tong
  • Y.-W. Lin
  • H. Liu
Article
  • 10 Downloads

Abstract

In this paper the results of DFT/TDDFT-based theoretical calculations of an electroluminescent zinc(II) chelate complex with 5-amino-2-(1H-benzoimidazol-2-yl)-phenol (HL), namely [ZnL2] (1), are presented. The molecular geometry, the orbital interaction between the L ligand and the Zn(II) center, and the effect of the substituted NH2 group on its absorption/emission property and colors are analyzed in detail. Moreover, the important Zn-ligand bonding property is analyzed by means of PDOS, OPDOS spectra, and the Mulliken population analysis scheme. It is the main ionic interaction between Zn(II) and the L ligand. Owing to the effect of the substituted NH2 group on its absorption/emission property and colors, it is quite probable that by introducing different substituted groups, a series of new OLED-relevant metal chelate complexes can be designed with their absorption/emission property and colors being tuned.

Keywords

theoretical calculation electronic structure photoluminescence LLCT zinc(II) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. W. Tang and S. A. Va. Slyke. Appl. Phys. Lett., 1987, 51, 913.CrossRefGoogle Scholar
  2. 2.
    X.-M. Fang, Y.-P.Huo, Z.-G. Wei, G.-Z. Yuan, B.-H. Huang, and S.-Z. Zhu. Tetrahedron, 2013, 69(47), 10052.Google Scholar
  3. 3.
    Y. Cui, Q.-D. Liu, D.-R. Bai, W.-L. Jia, Y. Tao, and S. Wang. Inorg. Chem., 2005, 44, 601.CrossRefGoogle Scholar
  4. 4.
    A. A. A. Aziz, I. H. A. Badr, and I. S. A. El–Sayed. Spectrochim. Acta Part A., 2012, 97, 388.CrossRefGoogle Scholar
  5. 5.
    C. S. Oh and J. Y. Lee. Dyes Pigm., 2013, 99(2), 374.Google Scholar
  6. 6.
    I. A. Bagatin, C. Legnani, and M. Cremona. Mater. Sci. Eng. C, 2009, 29(1), 267.Google Scholar
  7. 7.
    S.-L. Zheng and X.-M. Chen. Aust. J. Chem., 2004, 57, 703.CrossRefGoogle Scholar
  8. 8.
    Y. Shi, Y. Fu, C. Lü, L. Hui, and Z. Su. Dyes Pigm., 2010, 85(1, 2), 66.Google Scholar
  9. 9.
    Y.-Z. Xie, G.-G. Shan, P. Li, Z.-Y. Zhou, and Z.-M. Su. Dyes Pigm., 2013, 96(2), 467.Google Scholar
  10. 10.
    Y.-P. Tong, S.-L. Zheng, and X.-M. Chen. Inorg. Chem., 2005, 44, 4270.CrossRefGoogle Scholar
  11. 11.
    M. Lepeltier, D. Gigmes, and F. Dumur. Synth. Met., 2015, 199, 360.CrossRefGoogle Scholar
  12. 12.
    T. S. Kim, T. Okubo, and T. Mitani. Chem. Mater., 2003, 15, 4949.CrossRefGoogle Scholar
  13. 13.
    L. S. Sapochak, F. E. Benincasa, R. S. Schofield, J. L. Baker, K. K. C. Riccio, D. Fogarty, H. Kohlmann, K. F. Ferris, and P. E. Burrows. J. Am. Chem. Soc., 2002, 124, 6119.CrossRefGoogle Scholar
  14. 14.
    G. Sun, Q. Fu, C. Liu, X. Duan, X. Wang, and C. Jiangю J. Mol. Struct.: THEOCHEM, 2010, 955, 7.CrossRefGoogle Scholar
  15. 15.
    Y. Huo, C. Pan, S. Wang, S. Ji, T. Kong, L. Gao, N. Cai, and H. Zeng. Polyhedron, 2016, 119, 175.CrossRefGoogle Scholar
  16. 16.
    R. R. Valiev, E. N. Telminov, T. A. Solodova, E. N. Ponyavina, R. M. Gadirov, M. G. Kaplunov, and T. N. Kopylova. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 2014, 128, 137.CrossRefGoogle Scholar
  17. 17.
    H.–P. Shi, L. Xu, X.–F. Zhang, L.–Q. Jiao, Y. Cheng, J.–Y. He, J.–X. Yao, L. Fang, and C. Dong. J. Mol. Struct.: THEOCHEM, 2010, 950, 53.CrossRefGoogle Scholar
  18. 18.
    H. Xu, B. Xu, X. Fang, Y. Yue, L. Chen, H. Wang, and Y. Hao. Mater. Chem. Phys., 2011, 129(3), 840.Google Scholar
  19. 19.
    Y. Chi, B. Tong, and P.–T. Chou. Coord. Chem. Rev., 2014, 281, 1.CrossRefGoogle Scholar
  20. 20.
    H. Xu, Y. Yue, H. Wang, L. Chen, Y. Hao, and B. Xu. J. Lumin., 2012, 132(4), 919.Google Scholar
  21. 21.
    C.–M. Che, C.–C. Kwok, C.–F. Kui, S.–L. Lai, and K.–H. Low. Coord. Chem. Rev., 2013, 8, 607.Google Scholar
  22. 22.
    Y.–P. Tong and Y.–W. Lin. Inorg. Chim. Acta, 2009, 362, 4791.CrossRefGoogle Scholar
  23. 23.
    Y.–W. Lin and Y.–P. Tong. Inorg. Chem. Commun., 2009, 12, 208.CrossRefGoogle Scholar
  24. 24.
    Y.–P. Tong, H. Liu, Z. Jin, and Y.–W. Lin. Monatsh. Chem., 2012, 143, 1005.CrossRefGoogle Scholar
  25. 25.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, S. Dapprich, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al–Laham, C.–Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople. Gaussian 98, revision A9. Pittsburgh, PA: Gaussian, Inc., 1998.Google Scholar
  26. 26.
    M. J. S. Dewar and C. H. Reynolds. J. Comput. Chem., 1986, 2, 140.CrossRefGoogle Scholar
  27. 27.
    A. D. McLean and G. S. Chandler. J. Chem. Phys., 1980, 72, 5639.CrossRefGoogle Scholar
  28. 28.
    A. D. Becke. J. Chem. Phys., 1993, 98, 5648.CrossRefGoogle Scholar
  29. 29.
    G. Schaftenaar. MOLDEN, Version 35. Nijmegen, Netherlands: CAOS/CAMM Center Nijmegen Toernooiveld, 1999.Google Scholar
  30. 30.
    R. Hoffmann. Solids and Surfaces: A chemist′s view of bonding in extended structures. Weinheim and New York: VCH, 1988.CrossRefGoogle Scholar
  31. 31.
    N. M. O′Boyle, A. L. Tenderholt, and K. M. Langner. J. Comput. Chem., 2008, 29, 839.CrossRefGoogle Scholar
  32. 32.
    N. J. Turro. Modern Molecular Photochemistry. Sausalito, CA: University Science Books, 1991.Google Scholar
  33. 33.
    J. M. Klessinger and J. Michl. Excited states and photochemistry of organic molecules. New York: VCH, 1995.Google Scholar
  34. 34.
    Y.–P. Tong, S.–L. Zheng, and X.–M. Chen. J. Mol. Struct., 2007, 826, 104.CrossRefGoogle Scholar
  35. 35.
    Y.-P. Tong, S.-L. Zheng, and X.-M. Chen. Aust. J. Chem., 2006, 59, 653.CrossRefGoogle Scholar
  36. 36.
    Y.-P. Tong and Y.-W. Lin. Synth. Met., 2010, 160, 1662.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.School of Chemistry and Materials EngineeringHuizhou UniversityHuizhouP. R. China
  2. 2.Guangdong College and University Development Center for Green Chemical Engineering and Functional MaterialsHuizhou UniversityHuizhouP. R. China
  3. 3.School of Life ScienceHuizhou UniversityHuizhouP. R. China

Personalised recommendations