Journal of Structural Chemistry

, Volume 59, Issue 5, pp 1067–1077 | Cite as

Excited States of Weak Interacting Complexes of Formaldehyde and Alkali Metal Ions

  • Z. Shuai
  • A. Y. LiEmail author


The electronically excited states of formaldehyde and its complexes with alkali metal ions are investigated with the time-dependent density functional theory (TD DFT) method. Vertical transition energies for several singlet and triplet excited states, adiabatic transition energies for the first singlet and triplet excited states S1 and T1, the adiabatic geometries and vibrational frequencies of the ground state S0 and the first singlet and triplet excited states S1 and T1 for formaldehyde and its complexes are calculated. Better agreement with the experiment than that of the CIS method is obtained for CH2O at the TD DFT level. The nonlinear C=O⋯M+ interaction in the excited states S1 and T1 is weaker than the linear interaction in the ground state. In the S0 and S1 states, the C=O bond is elongated by cation complexation and its stretching frequency is red-shifted, but in the T1 state the C=O bond is shortened and its frequency is blue-shifted.


excited states time-dependent density-functional theory (TD DFT) C=O⋯M+ interaction IR spectra red shift and blue shift 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10947_2018_965_MOESM1_ESM.pdf (941 kb)


  1. 1.
    A. Stone. The theory of intermolecular forces. New York: Oxford University Press, 2013.CrossRefGoogle Scholar
  2. 2.
    P. Politzer and J. S. Murray. Noncovalent Forces. Springer International Publishing, 2015, 291–321.Google Scholar
  3. 3.
    P. Politzer, J. S. Murray, and T. Clark. Phys. Chem. Chem. Phys., 2013, 15, 11178–11189.CrossRefGoogle Scholar
  4. 4.
    A. J. Parker, J. Stewart, K. J. Donald, and C. A. Parish. J. Am. Chem. Soc., 2012, 134, 5165–5172.CrossRefGoogle Scholar
  5. 5.
    S. Scheiner. Hydrogen Bonding. New York: Oxford University Press, 1997.Google Scholar
  6. 6.
    I. V. Alabugin, M. Manoharan, S. Peabody, and F. Weinhold. J. Am. Chem. Soc., 2003, 125, 5973–5987.CrossRefGoogle Scholar
  7. 7.
    A. Y. Li. J. Chem. Phys., 2007, 126, 154102.CrossRefGoogle Scholar
  8. 8.
    M. Banno, K. Ohta, S. Yamaguchi, S. Hirai, and K. Tominaga. Acc. Chem. Res., 2009, 42, 1259–1269.CrossRefGoogle Scholar
  9. 9.
    V. A. Zakian. Science, 1995, 270, 1601–1607.CrossRefGoogle Scholar
  10. 10.
    M. Rooman, J. Lievin, E. Bulsine, and R. Wintjens. J. Mol. Bio., 2002, 319, 67–76.CrossRefGoogle Scholar
  11. 11.
    C. Biot, R. Wintjens, and M. Rooman. J. Am. Chem. Soc., 2004, 126, 6220/6221.CrossRefGoogle Scholar
  12. 12.
    L. McFail–Isom, X. Shui, and L. D. Williams. Biochemistry, 1998, 37, 17105–17111.CrossRefGoogle Scholar
  13. 13.
    A. M. DeVos, M. U. ltsch, and A. A. Kosssiakoff. Science, 1992, 255, 306–312.CrossRefGoogle Scholar
  14. 14.
    C. Ruan and M. T. Rodgers. J. Am. Chem. Soc., 2004, 126, 14600–14610.CrossRefGoogle Scholar
  15. 15.
    C. Kapota, J. Lemaire, P. Maitre, and G. Ohanessian. J. Am. Chem. Soc., 2004, 126, 1836–1842.CrossRefGoogle Scholar
  16. 16.
    S. Hoyau, K. Norrman, T. B. McMahon, and G. Ohanessian. J. Am. Chem. Soc., 1999, 121, 8864–8875.CrossRefGoogle Scholar
  17. 17.
    R. M. Moision and P. B. Armentrout. Phys. Chem. Chem. Phys., 2004, 6, 2588–2599.CrossRefGoogle Scholar
  18. 18.
    S. J. Ye, A. A. Clark, and P. B. Armentrout. J. Phys. Chem. B, 2008, 112, 10291–10302.CrossRefGoogle Scholar
  19. 19.
    P. B. Armentrout, E. I. Armentrout, A. A. Clark, T. E. Cooper, E. M. S. Stennett, and D. R. Carl. J. Phys. Chem. B, 2010, 114, 3927–3937.CrossRefGoogle Scholar
  20. 20.
    P. B. Armentrout, Mura Citir, Y. Chen, and M. T. Rodgers. J. Phys. Chem. A, 2012, 116, 11823–11832.CrossRefGoogle Scholar
  21. 21.
    T. Marino, N. Russo, and M. Toscano. J. Phys. Chem. B, 2003, 107, 2588–2594.CrossRefGoogle Scholar
  22. 22.
    C. Chudoba, E. Nibbering, and T. Elsaesser. J. Phys. Rev. Lett., 1998, 81, 3010–3013.CrossRefGoogle Scholar
  23. 23.
    E. Pines, D. Pines, Y. Z. Ma, and G. R. Fleming. Chem. Phys. Chem., 2004, 5, 1315–1327.CrossRefGoogle Scholar
  24. 24.
    G. J. Zhao and K. L. Han. Acc. Chem. Res., 2012, 45, 404–413.CrossRefGoogle Scholar
  25. 25.
    G. J. Zhao and K. L. Han. J. Phys. Chem. A, 2007, 111, 2469–2474.CrossRefGoogle Scholar
  26. 26.
    I. Renge. J. Phys. Chem. B, 2015, 119, 8599–8610.CrossRefGoogle Scholar
  27. 27.
    A. Balasubramanian and C. Rao. Spectrochim. Acta, 1962, 18, 1337–1352.Google Scholar
  28. 28.
    A. Garcia, R. Volkamer, L. Molina, M. Molina, J. Samuelson, J. Mellqvist, B. Galle, S. Herndon, and C. Kolb. Atmos. Chem. Phys., 2006, 6, 4545–4557.CrossRefGoogle Scholar
  29. 29.
    D. C. Moule and A. D. Walsh. Chem. Rev., 1975, 75, 67–84.CrossRefGoogle Scholar
  30. 30.
    C. M. Hadad, J. B. Foresman, and K. B. Wiberg. J. Phys. Chem., 1993, 97, 4293–4312.CrossRefGoogle Scholar
  31. 31.
    M. B. Robin. Higher Excifed States of Polyatomic Molecules. New York: Academic Press, 1985.Google Scholar
  32. 32.
    E. R. Davidson and L. E. McMurchie. Excited States, 1982, 5, 1–39.Google Scholar
  33. 33.
    M. Trachtman, G. D. Markham, J. P. Glusker, P. George, and C. W. Bock. Inorg. Chem., 1998, 37, 4421–4431.CrossRefGoogle Scholar
  34. 34.
    M. Trachtman, G. D. Markham, J. P. Glusker, P. George, and C. W. Bock. Inorg. Chem., 2001, 40, 4230–4241.CrossRefGoogle Scholar
  35. 35.
    A. Dreuw, J. L. Weisman, and M. Head–Gordon. J. Chem. Phys., 2003, 119, 2943–2946.CrossRefGoogle Scholar
  36. 36.
    M. Wanko, M. Garavelli, F. Bernardi, T. A. Niehaus, T. Frauenheim, and M. Elstner. J. Chem. Phys., 2004, 120, 1674–1692.CrossRefGoogle Scholar
  37. 37.
    A. L. Sobolewski and W. Domcke. Phys. Chem. Chem. Phys., 2004, 6, 2763–2771.CrossRefGoogle Scholar
  38. 38.
    S. Perun, A. L. Sobolewski, and W. Domcke. J. Phys. Chem. A, 2006, 110, 9031–9038.CrossRefGoogle Scholar
  39. 39.
    F. Furche and R. Ahlrichs. J. Chem. Phys., 2002, 117, 7443–7447.Google Scholar
  40. 40.
    C. V. Caillie and R. D. Amos. Chem. Phys. Lett., 2000, 317, 159–164.CrossRefGoogle Scholar
  41. 41.
    R. Bauernschmitt and R. Ahlrichs. Chem. Phys. Lett., 1996, 256, 454–464.CrossRefGoogle Scholar
  42. 42.
    D. Rappoport and F. Furche. J. Chem. Phys., 2010, 133, 134105.CrossRefGoogle Scholar
  43. 43.
    K. A. Peterson, D. Figgen, E. Goll, H. Stoll, and M. Dolg. J. Chem. Phys., 2003, 119, 11113–11123.CrossRefGoogle Scholar
  44. 44.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian 09, revision D. 01, 2009.Google Scholar
  45. 45.
    S. Taylor, D. G. Wilden, and J. Comer. Chem. Phys., 1982, 70, 291–298.CrossRefGoogle Scholar
  46. 46.
    K. Takagi and T. Oka. J. Phys. Soc. Jpn., 1963, 18, 1174–1180.CrossRefGoogle Scholar
  47. 47.
    V. Jones and J. Coon. J. Mol. Spectrosc., 1969, 31, 137–154.CrossRefGoogle Scholar
  48. 48.
    T. Nakanaga, S. Kondo, and S. Saëki. J. Chem. Phys., 1982, 76, 3860–3865.CrossRefGoogle Scholar
  49. 49.
    V. Job, V. Sethuraman, and K. Innes. J. Mol. Spectr., 1969, 30, 365–426.CrossRefGoogle Scholar
  50. 50.
    A. K. Shah and D. C. Moule. Spectrochimica Acta Part A: Molecular Spectroscopy, 1978, 34, 749–760.CrossRefGoogle Scholar
  51. 51.
    P. Jensen and P. Bunker. J. Mol. Spectr., 1982, 94, 114–125.CrossRefGoogle Scholar
  52. 52.
    J. Hardwick and S. Till. J. Chem. Phys., 1979, 70, 2340–2345.CrossRefGoogle Scholar
  53. 53.
    W. Henke, H. Selzle, T. Hays, E. Schlag, and S. H. Lin. J. Chem. Phys., 1982, 76, 1327–1334.CrossRefGoogle Scholar
  54. 54.
    W. Raynes. J. Chem. Phys., 1966, 44, 2755–2777.CrossRefGoogle Scholar
  55. 55.
    D. Clouthier, A. Craig, and F. Birss. Can. J. Phys., 1984, 62, 973–977.CrossRefGoogle Scholar
  56. 56.
    S. Taylor, D. G. Wilden, and Comer. J. Chem. Phys., 1982, 70, 291.Google Scholar
  57. 57.
    J. C. Brand and C. G. Stevens. J. Chem. Phys., 1973, 58, 3331–3338.CrossRefGoogle Scholar
  58. 58.
    G. W. Robinson and V. E. DiGiorgio. Can. J. Chem., 1958, 36, 31–38.CrossRefGoogle Scholar
  59. 59.
    R. F. W. Bader. Altoms in Molecules, A Quantum Theory. Oxford: Oxford University Press, 1990.Google Scholar
  60. 60.
    T. Keith. AIMAll (Version 13.10.19) TK Gristmill Software. Overland Park KS, USA, 2013.Google Scholar
  61. 61.
    F. Weinhold. Discovering Chemistry with Natural Bond Orbitals. John Wiley & Sons, 2012.CrossRefGoogle Scholar
  62. 62.
    E. Glendening, J. Badenhoop, A. Reed, J. Carpenter, J. Bohmann, and F. Weinhold. GenNBO5.0W. Theoretical Chemistry Institute. Madison WI: University of Wisconsin, 2001.Google Scholar
  63. 63.
    K. B. Wiberg. Tetrahedron, 1968, 24, 1083–1096.CrossRefGoogle Scholar
  64. 64.
    I. Mayer. Chem. Phys. Lett., 1983, 97, 270–274.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSouthwest UniversityChongqingP. R. China

Personalised recommendations