Journal of Structural Chemistry

, Volume 59, Issue 5, pp 1022–1031 | Cite as

Molecular Structure, Vibrational Analysis, Hyperpolarizability and NBO Analysis of 3-Methyl-Picolinic Acid Using SQM Calculations

  • G. Ramesh
  • J. Prashanth
  • J. Laxman Naik
  • B. Venkatram ReddyEmail author


In this study, FT-IR and FT-Raman spectra of 3-methyl picolinic acid (MPA) are recorded in the ranges 4000–450 cm–1 and 4000–50 cm–1, respectively. The optimized geometry is obtained by scaled quantum mechanical calculations using density functional theory employing the B3LYP functional with the 6–311++G(d,p) basis set. Vibrational assignments are suggested for all the fundamental vibrations unambiguously, using the potential energy distribution obtained in the computations. The rms error between the observed and calculated frequencies is found to be 8.48 cm–1. The dipole moment, polarizability, and hyperpolarizability values are computed to study the NLO behavior of the molecule. The NBO analysis is made to study the stability of the molecule arising from hyperconjugative interactions and charge delocalization.


methyl-picolinic acid DFT FT-IR and FT-Raman spectra vibrational analysis dipole moment hyperpolarizability NLO effect NBO analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Eubank, R. D. Walsh, P. Poddar, H. Srikanth, R. W. Larsen, and M. Eddaoudi. Cryst. Growth Des., 2006, 6, 1453–1457.CrossRefGoogle Scholar
  2. 2.
    M. L. Tong, J. Wang, and S. Hu. J. Soli. State Chem., 2005, 178, 1518–1525.CrossRefGoogle Scholar
  3. 3.
    J. Laxman Naik, B. Venkatram Reddy, and N. Prabavathi. J. Mol. Struct., 2015, 1100, 43–58.CrossRefGoogle Scholar
  4. 4.
    J. Laxman Naik, J. Prashanth, and B. Venkatram Reddy. In: ICSEMF proceedings. 2015, 336–339.Google Scholar
  5. 5.
    M. A. Yurovskaya, O. D. Mitkin, and F. V. Zaitsera. Chem. Heterocycl. Compd., 1998, 34, 871–879.CrossRefGoogle Scholar
  6. 6.
    G. W. Evan and P. E. Johnson. Peiatr. Res., 1980, 14, 876–880.CrossRefGoogle Scholar
  7. 7.
    J. A. Fernandez–Poi, P. D. Hamilton, and D. J. Klos. Anticancer Res., 2001, 21, 931–957.Google Scholar
  8. 8.
    A. I. Olantunbosun and S. Banjo. Middle East J. Sci. Res., 2013, 18(5), 597–608.Google Scholar
  9. 9.
    A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.CrossRefGoogle Scholar
  10. 10.
    C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1988, 37, 785–789.CrossRefGoogle Scholar
  11. 11.
    M. J. Frisch, G. W. Trucks, et al. 2009 Gaussian. Wallingford, CT: Gaussian Inc., 2009.Google Scholar
  12. 12.
    A. Berces and T. Ziegler. J. Chem. Phys. 1993, 98, 4793–4804.CrossRefGoogle Scholar
  13. 13.
    P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs, and A. Vargha. J. Am. Chem. Soc., 1983, 105, 7037–7047.CrossRefGoogle Scholar
  14. 14.
    G. Fogarasi and P. Pulay. Chapt. 3 in: Vibrational Spectra and Structure: A Series of Advances, Vol. 14 / Ed. J. R. Durig. Amsterdam: Elsevier, 1985.Google Scholar
  15. 15.
    G. Fogarasi, X. Zhou, P. W. Tayler, and P. Pulay. Am. Chem. Soc., 1992, 114, 8191–8201.CrossRefGoogle Scholar
  16. 16.
    T. Sundius. J. Mol. Struct., 1990, 218, 321–326.CrossRefGoogle Scholar
  17. 17.
    (a) T. Sundius. Vib. Spectrosc. 2002, 29, 89–95.CrossRefGoogle Scholar
  18. (b).
    Molvib (V 7.0): Calculation of Harmonic Force Fields and Vib. Modes of Molecules, QCPE program. 2002, (807).Google Scholar
  19. 18.
    E. B. Wilson. Phys. Rev., 1934, 45, 706–714.CrossRefGoogle Scholar
  20. 19.
    A. Datta. J. Phys. Chem. C, 2009, 113, 3339–3344.CrossRefGoogle Scholar
  21. 20.
    Y. X. Sun, Q. L. Hao, W. X. Wei, Z. X. Yu, L. D. Lu, X. Wang, and Y. S. Wang. J. Mol. Struct: THEOCHEM, 2009, 904, 74–82.CrossRefGoogle Scholar
  22. 21.
    V. M. Geskin, C. Lambert, and J. L. Bredas. J. Am. Chem. Soc., 2004, 125, 15651–15658.CrossRefGoogle Scholar
  23. 22.
    M. Nakano, H. Fujita, M. Takahata, and K. Yamaguchi. J. Am. Chem. Soc., 2002, 124, 9648–9655.CrossRefGoogle Scholar
  24. 23.
    D. Sajan, H. Joe, V. S. Jayakumar, and J. Zaleski. J. Mol. Struct., 2006, 785, 43–53.CrossRefGoogle Scholar
  25. 24.
    M. Arivazhagan and S. Jeyavijayan. Spectrochim. Acta A, 2011, 79, 376–383.CrossRefGoogle Scholar
  26. 25.
    L. Rajith, A. K. Jissy, K. G. Kumar, and A. Datta. J. Phys. Chem. C, 2011, 115, 21858–21864.CrossRefGoogle Scholar
  27. 26.
    A. E. Reed, L. A. Curtiss, and F. Weinhold. Chem. Rev., 1988, 88, 899–926.CrossRefGoogle Scholar
  28. 27.
    J. P. Foster and F. Weinhold. J. Am. Chem. Soc., 1980, 102, 7211–7218.CrossRefGoogle Scholar
  29. 28.
    J. Chocholousova, V. V. Spirko, and P. Hobza. Phys. Chem. Chem. Phys., 2004, 6, 37–41.CrossRefGoogle Scholar
  30. 29.
    E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold. NBO Version 3.1. Madison: TCI, University of Wisconsin, 1998.Google Scholar
  31. 30.
    S. Sebastian and N. Sundaraganesan. Spectrochim. Acta A, 2010, 75, 941–952.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. Ramesh
    • 1
  • J. Prashanth
    • 1
  • J. Laxman Naik
    • 1
  • B. Venkatram Reddy
    • 1
    Email author
  1. 1.Department of PhysicsKakatiya UniversityWarangalIndia

Personalised recommendations