Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 5, pp 1010–1021 | Cite as

Experimental and Theoretical Study on New Zn(II) Halide Complexes of 3,5-Diazaindole

  • S. BadoğluEmail author
  • Ş. Yurdakul
Article
  • 19 Downloads

Abstract

3,5-Diazaindole — zinc(II) halide complexes (halogen: Cl, Br, I) are synthesized for the first time. Experimental mid-IR spectra of the compounds were recorded in the range 4000–550 cm–1, and far-IR spectrum of the zinc(II) chloride complex is recorded in range 700–40 cm–1. The structural features of the zinc(II) halide complexes of 3,5-diazaindole (ICPY) are studied by quantum chemical methods. The optimized geometry and vibrational frequencies of the ICPY — zinc(II) halide complexes are calculated using the B3LYP/DFT method with the LANL2DZ basis set in the ground state. Vibrational assignments of the most important bands are made with the help of the vibrational energy distribution analysis. The frontier molecular orbital energies, NBO charges, and dipole moments are presented. 1H and 13C NMR spectra of the zinc(II) chloride complex is also given.

Keywords

3,5-diazaindole metal complexes FTIR NMR DFT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. D. Wilson. J. Med. Chem., 1996, 39, 1452–1462.CrossRefGoogle Scholar
  2. 2.
    J. C. Tang. J. Med. Chem., 1997, 40, 3937–3946.CrossRefGoogle Scholar
  3. 3.
    L. B. Townsend. J. Med. Chem., 1998, 41, 1252–1262.CrossRefGoogle Scholar
  4. 4.
    J. Sjöström. J. Med. Chem., 1998, 41, 1777–1788.CrossRefGoogle Scholar
  5. 5.
    J. J. Chen, Y. Wie, J. C. Drach, and J. C. Townsend. J. Med. Chem., 2000, 43, 2449–2456.CrossRefGoogle Scholar
  6. 6.
    Y. Rival, G. Grassy, and G. Michel. Chem. Pharm. Bull., 1992, 40, 1170–1176.CrossRefGoogle Scholar
  7. 7.
    M. H. Fischer and A. Lusi. J. Med. Chem., 1972, 15, 982–985.CrossRefGoogle Scholar
  8. 8.
    A. Shaabani, A. Soleimani, and A. Maleki. Tetrahedron Lett., 2006, 47, 3031–3034.CrossRefGoogle Scholar
  9. 9.
    C. Sablayrolles, G. H. Gros, J. C. Milhavet, E. Rechenq, J. P. Chapat, M. Boucard, and J. H. McNeill. J. Med. Chem., 1984, 27, 206–212.CrossRefGoogle Scholar
  10. 10.
    J. J. Kaminski, B. Wallmark, C. Briving, and B. M. Anderson. J. Med. Chem., 1991, 34, 533–542.CrossRefGoogle Scholar
  11. 11.
    T. Wang, M. A. Block, S. Cowen, A. M. Davies, E. Devereaux, L. Gingipalli, J. Johannes, N. A. Larsen, Q. Su, J. A. Tucker, D. Whitston, J. Wu, H.–J. Zhang, M. Zinda, and C. Chuaqui. Bioorg. Med. Chem. Lett., 2012, 22, 2063–2069.CrossRefGoogle Scholar
  12. 12.
    M. J. Bamford, M. J. Alberti, N. Bailey, S. Davies, D. K. Dean, A. Gaiba, S. Garland, J. D. Harling, D. K. Jung, T. A. Panchal, C. A. Parr, J. G. Steadman, A. K. Takle, J. T. Townsend, D. M. Wilson, and J. Witherington. Bioorg. Med. Chem. Lett., 2005, 15, 3402–3406.CrossRefGoogle Scholar
  13. 13.
    P. Naus, M. Kuchar, and M. Hocek. Collect. Czech. Chem. Commun., 2008, 73, 665–678.CrossRefGoogle Scholar
  14. 14.
    S. Costanzi, C. Lambertucci, R. Volpini, S. Vittori, G. Lupidi, and G. Cristalli. Nucleosides Nucleotides Nucleic Acids, 2001, 20, 1037–1041.CrossRefGoogle Scholar
  15. 15.
    P. Franchetti, L. Messini, L. Cappellacci, M. Grifantini, G. Nocentini, P. Guarracino, M. E. Marongiu, and P. Lacolla. Antivir. Chem. Chemother., 1993, 4, 341–352.CrossRefGoogle Scholar
  16. 16.
    M. M. Balamurali and S. K. Dogra. J. Mol. Struct., 2004, 691, 59–70.CrossRefGoogle Scholar
  17. 17.
    J. C. Lindon, J. M. Williams, and P. Barraclough. Magn. Reson. Chem., 1986, 24, 55–58.CrossRefGoogle Scholar
  18. 18.
    W. W. K. R. Mederski, D. Dorsch, H. H. Bokel, N. Beier, I. Lues, and P. Schelling. J. Med. Chem., 1994, 37, 1632–1645.CrossRefGoogle Scholar
  19. 19.
    W. W. K. R. Mederski, D. Dorsch, M. Osswald, H. Schwartz, N. Beier, M. Christadler, K. O. Minck, P. Schelling, and C. J. Schmitges. Eur. J. Med. Chem., 1997, 32, 479–491.CrossRefGoogle Scholar
  20. 20.
    Ş. Yurdakul and S. Badoğlu. Int. J. Quantum Chem., 2011, 111, 2944–2959.CrossRefGoogle Scholar
  21. 21.
    C. T. Chasapis, C. A. Spiliopoulou, A. C. Loutsidou, and M. E. Stefanidou. Arch. Toxicol., 2012, 86, 521–534.CrossRefGoogle Scholar
  22. 22.
    F. Y. Wu and C. W. Wu. Annu. Rev. Nutr., 1987, 7, 251–272.CrossRefGoogle Scholar
  23. 23.
    F. Y. Wu, W. J. Huang, R. B. Sinclair, and L. Powers. J. Biol. Chem., 1992, 267, 25560–25567.Google Scholar
  24. 24.
    R. I. Henkin. Med. Clin. North Am., 1976, 60, 779–797.CrossRefGoogle Scholar
  25. 25.
    A. W. Root, G. Duckett, M. Sweetland, and E. O. Reiter. J. Nutr., 1979, 109, 958–964.CrossRefGoogle Scholar
  26. 26.
    R. Dennington II, T. Keith, J. Millam, K. Eppinnett, W. L. Hovell, and R. Gilliland. GaussView, Version 3.09. Semichem: Shawnee Mission KS, 2003.Google Scholar
  27. 27.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al–Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople. Gaussian 03, Revision C. 02. Gaussian Inc.: Wallingford CT, 2004.Google Scholar
  28. 28.
    A. D. Becke. J. Chem. Phys., 1993, 98, 5648–5652.CrossRefGoogle Scholar
  29. 29.
    C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1988, 37, 785–789.CrossRefGoogle Scholar
  30. 30.
    P. J. Hay and W. A. Wadt. J. Chem. Phys., 1985, 82, 270–283.CrossRefGoogle Scholar
  31. 31.
    K. Wolinski, J. F. Hinton, and P. Pulay. J. Am. Chem. Soc., 1990, 112, 8251–8260.CrossRefGoogle Scholar
  32. 32.
    J. Lorenc, L. Dyminska, Z. Talik, J. Hanuza, M. Maczka, A. Waskowska, and L. Macalik. J. Rama. Spectrosc., 2008, 39, 1–15.CrossRefGoogle Scholar
  33. 33.
    J. C. Teulade, R. Escale, J. C. Rossi, J. P. Chapat, G. Grassy, and M. Payard. Aust. J. Chem., 1982, 35, 1761–1768.CrossRefGoogle Scholar
  34. 34.
    S. İde, A. Ataç, and Ş. Yurdakul. J. Mol. Struct., 2002, 605, 103–107.CrossRefGoogle Scholar
  35. 35.
    M. H. Jamróz. Vibrational Energy Distribution Analysis VEDA 4. Warsaw, 2004.Google Scholar
  36. 36.
    B. Ośmiałowski, E. Kolehmainen, and E. Gawinecki. Magn. Reson. Chem., 2001, 39, 334–340.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Flight Training, Faculty of Air TransportationUniversity of Turkish Aeronautical AssociationEtimesgut, AnkaraTurkey
  2. 2.Department of Physics, Faculty of SciencesGazi UniversityTeknikokullar, AnkaraTurkey

Personalised recommendations