Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 4, pp 870–876 | Cite as

Optical Properties of CdS Quantum Dots on Graphene

  • O. V. Sedelnikova
  • C. P. Ewels
  • L. G. Bulusheva
  • A. V. Okotrub
Article

Abstract

Hybrid systems based on graphene and semiconductor quantum dots are prospective materials for optoelectronics and photonics. In this work, electronic structure and dielectric properties of small particles of cadmium sulfide on the surface of graphene were studied using the density functional theory. The optical spectrum of this hybrid structure depends on the orientation of the nanoparticle relative to graphene due to the interaction between electrons of sulfur atoms on the surface of the CdS particle and π-orbitals of carbon atoms.

Keywords

graphene cadmium sulfide quantum dot permittivity density functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Robert, B. A. Bunker, and P. V. Kamat. Adv. Mater., 2005, 17, 2458.CrossRefGoogle Scholar
  2. 2.
    H. Chang, H.–C. Wu, E. Lee, and N.–L. Wu. Electrochem. Commun., 2010, 12, 483.CrossRefGoogle Scholar
  3. 3.
    A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu. Adv. Mater., 2010, 22, 103.CrossRefPubMedGoogle Scholar
  4. 4.
    R. Akbarzadeh, S. S. Khalili, and H. Dehghani. New J. Chem., 2016, 40, 3528.CrossRefGoogle Scholar
  5. 5.
    A. V. Okotrub, A. V. Gusel′nikov, Yu. A. Algaer, A. G. Kudashov, S. V. Larionov, and L. G. Bulusheva. Phys. Stat. Solid. B, 2010, 247, 2859.CrossRefGoogle Scholar
  6. 6.
    L. G. Bulusheva, A. V. Okotrub, Yu. V. Fedeseeva, M. A. Kanygin, and S. V. Larionov. Phys. Stat. Solid. B, 2012, 249, 2572.CrossRefGoogle Scholar
  7. 7.
    L. G. Bulusheva, A. V. Okotrub, Yu. V. Fedeseeva, S. V. Larionov, A. A. Zarubanov, and K. S. Zhuravlev. J. Nanoelectron. Optoelectron., 2013, 8, 36.CrossRefGoogle Scholar
  8. 8.
    L. G. Bulusheva, Yu. V. Fedeseeva, A. G. Kurenya, D. V. Vyalikh, and A. V. Okotrub. J. Phys. Chem. C, 2015, 119, 25898.CrossRefGoogle Scholar
  9. 9.
    Yu. V. Fedoseeva, V. E. Arkhipov, E. A. Maksimivskuy, A. V. Gusel′nikov, Yu. L. Mikhlin, K. S. Zhuravlev, B. V. Senkovskuy, S. V. Larionov, L. G. Bulusheva, and A. V. Okotrub. J. Phys. Chem. C, 2017, 121, 19182.CrossRefGoogle Scholar
  10. 10.
    X. Songa, M. Wang, D. Wei, D. Liu, H. Shi, C. Hu, L. Fang, W. Zhang, and C. Du. J. Alloy. Compound., 2015, 651, 230.CrossRefGoogle Scholar
  11. 11.
    A. A. Zarubanov, K. S. Zhuravlev, T. A. Duda, and A. V. Okotrub. JETP Lett., 2012, 95, 362.CrossRefGoogle Scholar
  12. 12.
    X. Geng, L. Niu, Z. Xing, R. Song, G. Liu, M. Sun, G. Cheng, H. Zhong, Z. Liu, Z. Zhang, L. Sun, H. Xu, L. Lu, and L. Liu. Adv. Mater., 2010, 22, 638.CrossRefPubMedGoogle Scholar
  13. 13.
    G. Katsukis, J. Malig, C. Schulz–Drost, S. Leubner, N. Jux, and D. M. Guldi. ACS Nano, 2016, 6, 1915.CrossRefGoogle Scholar
  14. 14.
    G. Williams, B. Seger, and P. V. Kamat. ACS Nano, 2008, 2, 1487.CrossRefPubMedGoogle Scholar
  15. 15.
    Yu. V. Fedoseeva, L. G. Bulusheva, A. V. Okotrub, M. A. Kanygib, D. V. Gorodestkiy, I. P. Asanov, D. V. Vyalikh, A. P. Puzyr, and V. S. Bondar. Sci. Rep., 2015, 5, 9379.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber. Nature, 2003, 421, 241CrossRefPubMedGoogle Scholar
  17. 17.
    A. K. Geim. Science, 2009, 324, 1530CrossRefPubMedGoogle Scholar
  18. 18.
    A. K. Geim and K. S. Novoselov. Nat. Mater., 2006, 6, 183.CrossRefGoogle Scholar
  19. 19.
    F. Bonaccorse, Z. Sun, T. Hasan, and A. C. Ferrari. Nat. Photon., 2010, 4, 611.CrossRefGoogle Scholar
  20. 20.
    O. V. Sedelnikova, L. G. Bulusheva, and A. V. Okotrub. Synth. Met., 2010, 160, P. 1848.CrossRefGoogle Scholar
  21. 21.
    O. V. Sedelnikova, L. G. Bulusheva, and A. V. Okotrub. J. Chem. Phys., 2011, 134, 244707.CrossRefPubMedGoogle Scholar
  22. 22.
    O. V. Sedelnikova, L. G. Bulusheva, and A. V. Okotrub. Fullerenes, Nanotubes, Carbon Nanostruct., 2012, 20, 558.CrossRefGoogle Scholar
  23. 23.
    O. V. Sedelnikova, L. G. Bulusheva, I. P. Asanov, I. V. Yushiba, and A. V. Okotrub. Appl. Phys. Lett., 2014, 104, 161905.CrossRefGoogle Scholar
  24. 24.
    L. G. Bulusheva, O. V. Sedelnikova, and A. V. Okotrub. Int J. Quant. Chem., 2016, 116, 270.CrossRefGoogle Scholar
  25. 25.
    O. V. Sedelnikova, L. G. Bulusheva, and A. V. Okotrub. Phys. Status Solidi RRL, 2017, 11, 1600367.CrossRefGoogle Scholar
  26. 26.
    R. W. Havener, Y. Liang, L. Brown, L. Yang, and J. Park. Nano Lett., 2014, 14, 3353.CrossRefPubMedGoogle Scholar
  27. 27.
    L. Zundel and A. Manjavacas. ACS Photonics., 2017, 4, 1831.CrossRefGoogle Scholar
  28. 28.
    C. Hartwigsen, S. Goedecker, and J. Hutter. Phys. Rev. B, 1998, 58, 3641.CrossRefGoogle Scholar
  29. 29.
    R. Jones and P. Briddon. Semicond. Semimetals, 1998, 51, 287.CrossRefGoogle Scholar
  30. 30.
    M. Rayson and P. Briddon. Comput. Phys. Commun., 2008, 178, 128.CrossRefGoogle Scholar
  31. 31.
    M. J. Rayson and P. R. Briddon. Phys. Rev. B, 2009, 80, 205104.CrossRefGoogle Scholar
  32. 32.
    S. Sarkar, S. Pal, P. Sarkar, A. L. Rosa, and Th. Frauenheim. J. Chem. Theory Comput., 2011, 7, 2262.CrossRefPubMedGoogle Scholar
  33. 33.
    M. Safari, Z. Izadi, J. Jalilian, I. Ahmad, and S. Jalali–Asadabadi. Phys. Lett. A, 2016, 381, 663.CrossRefGoogle Scholar
  34. 34.
    S. Datta, M. Kabir, T. Saha–Dasgupta, and D. D. Sarma. J. Phys. Chem. C, 2008, 112, 8206.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. V. Sedelnikova
    • 1
    • 2
  • C. P. Ewels
    • 3
  • L. G. Bulusheva
    • 1
    • 2
  • A. V. Okotrub
    • 1
    • 2
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institut des Matériaux Jean RouxelCNRS-Université de NantesNantesFrance

Personalised recommendations