Journal of Structural Chemistry

, Volume 59, Issue 3, pp 748–754 | Cite as

Prediction of the Normal Boiling Points and Enthalpy of Vaporizations of Alcohols and Phenols Using Topological Indices

  • F. Arjmand
  • F. ShafieiEmail author


Establishing quantitative correlations between various molecular properties and chemical structures is of great technological importance for environmental and medical aspects. These approaches are referred to as Quantitative Structure-Property Relationships (QSPR), which relate the physico-chemical or thermodynamic properties of compounds to their structures. The main goal of QSPR studies is to find a mathematical relationship between the property of interest and a number of molecular descriptors derived from the structure of the molecule. The current study presents the relationship between the Randic′ (1χ), Balaban (J),Wiener polarity (Wp), Hyper Wiener (WW), Szeged (Sz), Harary (H) and Wiener (W) indices to the normal boiling points (Tbp, K) and the standard enthalpies of vaporization (ΔH vap 0 , kJ/mol–1) of 227 alcohols and phenols. The multiple linear regression (MLR) and backward methods were employed to give the QSPR models. After MLR analysis, we studied the validation of linearity between the molecular descriptors in the best models for used properties. The results have shown that three descriptors (W, 1χ, J) could be efficiently used for estimating the normal boiling points, and two descriptors (1χ, J) could be used for modeling and predicting the standard enthalpies of vaporization of considered compounds.


QSPR molecular descriptors graph theory MLR validation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10947_2018_921_MOESM1_ESM.pdf (75 kb)
Prediction of the Normal Boiling Points and Enthalpy of Vaporizations of Alcohols and Phenols Using Topological Indices


  1. 1.
    C. Hansch, A. Leo, and D. H. Hoekman. Exploring QSAR-Fundamentals, Applications in Chemistry, Biology. American Chemical Society, Washington, DC, USA, 1995,580.Google Scholar
  2. 2.
    C. Hansch, A. Leo, and D. H. Hoekman. Exploring QSAR–Hydrophobic, Electronic, Steric Constants. American Chemical Society, Washington, DC, USA, 1995,368.Google Scholar
  3. 3.
    R. Ziraoui, M. Elgouri, N. Rami, H. Meghraoui, and H. Tagmouti. J. Mater. Environ. Sci., 2011, 2, 225–232.Google Scholar
  4. 4.
    M. H. Fatemi and F. Bagheri. Innovations Pharm. Pharmacother., 2015, 3, 519–524.Google Scholar
  5. 5.
    K. Lee, Y. Polyakova, and K. H. Row. J. Liq. Chromatogr. Relat. Technol., 2004, 2, 629–639.CrossRefGoogle Scholar
  6. 6.
    A. Habibi-Yangjeh, M. Danandeh-Jenagharad, and M. Nooshyar., Bull. Korean Chem. Soc., 2005, 26, 2007–2016.CrossRefGoogle Scholar
  7. 7.
    Y. Yuan, P. D. Mosier, and Y. Zhang. J. Biophys. Chem., 2012, 3, 49–57.CrossRefGoogle Scholar
  8. 8.
    R. Behjatmanesh-Ardakani, S. M. Mirhosseini, and F. Ghaderiyeh-Mahmood Abadi. MATCH Commun. Math. Comput. Chem., 2014, 71, 305–321.Google Scholar
  9. 9.
    C. Cao, S. Liu, and Z. Li. J. Chem. Inf. Comput. Sci., 1999, 39, 1105–1111.CrossRefGoogle Scholar
  10. 10.
    L. Pogliani. Croat. Chem. Acta, 2002, 75, 409–432.Google Scholar
  11. 11.
    L. Pogliani. Internet Electron. J. Mol. Des., 2006, 5, 364–375.Google Scholar
  12. 12.
    L. Mu and C. Feng. MATCH Commun. Math. Comput. Chem., 2006, 56, 217–230.Google Scholar
  13. 13.
    C. Lu, W. Guo, and Y. Wang. J. Mol. Model., 2006, 12, 749–756.CrossRefPubMedGoogle Scholar
  14. 14.
    M. Ghamali, S. Chtita, A. Adad, R. Hmamouchi, M. Bouachrine, and T. Lakhlifi. J. Mater. Environ. Sci., 2015, 6, 280–288.Google Scholar
  15. 15.
    T. Ivanciuc, O. Ivanciuc, and D. J. Klein. Int. J. Mol. Sci., 2006, 7, 358–374.CrossRefGoogle Scholar
  16. 16.
    M. Kompany-Zareh. Acta Chim. Slovaca, 2003, 50, 259–273.Google Scholar
  17. 17.
    J. Damborsky and T. Wayne Schults. Chemosphere, 1997, 34, 429–432.CrossRefPubMedGoogle Scholar
  18. 18.
    S. T. Shukla and V. V. Sawant. Pharma. Chem., 2010, 2, 200–205.Google Scholar
  19. 19. Scholar
  20. 20.
    M. Randic. J. Math. Chem., 1991, 7, 155–168.CrossRefGoogle Scholar
  21. 21.
    M. Randic. J. Am. Chem. Soc., 1975, 97, 6609–6615.CrossRefGoogle Scholar
  22. 22.
    A. T. Balaban. Chem. Phys. Lett., 1982, 89, 399–404.CrossRefGoogle Scholar
  23. 23.
    M. Randic. Acta Chim. Slovaca, 2002, 49, 483–496.Google Scholar
  24. 24.
    B. Zhou and I. Gutman. Chem. Phys. Lett., 2004, 394, 93–95.CrossRefGoogle Scholar
  25. 25.
    D. J. Klein, W. Yan, and Y. N. Yeh. Int. J. Quantum Chem., 2006, 106, 1756–1761.CrossRefGoogle Scholar
  26. 26.
    M. Liu and B. Liu. MATCH Commun. Math. Comput. Chem., 2011, 66, 293–304.Google Scholar
  27. 27.
    H. Deng, H. Xiao, and F. Tang. MATCH Commun. Math. Comput. Chem., 2010, 63, 257–264.Google Scholar
  28. 28.
    I. Gutman and S. Klavžar. J. Chem. Inf. Comput. Sci., 1995, 35, 1011–1014.CrossRefGoogle Scholar
  29. 29.
    P. V. Khadikar, N. V. Deshpande, P. P. Kale, A. Dobrynin, I. Gutman, and G. Dömötör. J. Chem. Inf. Compt. Sci., 1995, 35, 547–550.CrossRefGoogle Scholar
  30. 30.
    K. C. Das, B. Zhou, and N. Trinajstic. J. Math. Chem., 2009, 46, 1369–1376.CrossRefGoogle Scholar
  31. 31. Scholar
  32. 32.
    P. J. Roach. Verification, Validation in Computational Science, Engineering. Hermosa Publishers, Albuquerque, NM, 1998, 446.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Science Faculty, Arak BranchIslamic Azad UniversityArakIran

Personalised recommendations