Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 3, pp 595–603 | Cite as

Water Structure in the Contact Layer on the Surface of Crystalline Silver Iodine

  • S. V. Shevkunov
Article
  • 23 Downloads

Abstract

The basal face of a silver iodide crystal in unsaturated water vapor is covered by a continuous molecular layer which serves as an underlying film. The structure of the film demonstrates long-range molecular order and looks like a honeycomb. Thus, macroscopic manifestations of the substrate wetting are due to the structure of the underlying film rather than the substrate crystal surface as such. A quarter of hydrogen bonds of the film molecules participate in bonding with the ions of the second crystallographic layer of the substrate. Three other quarters ensure the integrity of the film. The interactions with the ions of the first crystallographic layer are antibonding in nature. No free molecules serving as hydrogen bond donors are left on the film surface to keep vapor molecules. The shape of the free energy function associated with the adsorption of vapor molecules indicates its markedly layered nature.

Keywords

water monomolecular film long-range molecular order hydrogen bonds layered adsorption computer simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Strazdaite, J. Versluis, and H. J. Bakker. J. Chem. Phys., 2015, 143, 084708.CrossRefPubMedGoogle Scholar
  2. 2.
    M. Svoboda, A. Malijevsky, and M. Lisal. J. Chem. Phys., 2015, 143, 104701.CrossRefPubMedGoogle Scholar
  3. 3.
    G. Fraux and P. Doye. J. Chem. Phys., 2014, 141, 216101.CrossRefPubMedGoogle Scholar
  4. 4.
    S. A. Zielke, A. K. Bertram, and G. N. Patey. J. Phys. Chem. B, 2015, 119(29), 9049.CrossRefPubMedGoogle Scholar
  5. 5.
    S. A. Zielke, A. K. Bertram, and G. N. Patey. J. Phys. Chem. B, 2016, 120(9), 2291.CrossRefPubMedGoogle Scholar
  6. 6.
    P. J. DeMott. J. Appl. Meteorol., 1990, 29(10), 1072.CrossRefGoogle Scholar
  7. 7.
    P. J. DeMott, Y. Chen, S. M. Kreidenweis, D. C. Rogers, and D. E. Sherman. Geophys. Res. Lett., 1999, 26(16), 2429.CrossRefGoogle Scholar
  8. 8.
    S. Meloni, A. Giacomello, and C. M. Casciola. J. Chem. Phys., 2016, 145, 211802.CrossRefPubMedGoogle Scholar
  9. 9.
    T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, and P. Koumoutsakos. J. Phys. Chem. B, 2003, 107, 1345.CrossRefGoogle Scholar
  10. 10.
    T. D. Loeffler and B. Chen. J. Chem. Phys., 2013, 139, 234707.CrossRefPubMedGoogle Scholar
  11. 11.
    M. Barisik and A. Beskok. Mol. Simulat., 2013, 39(9),700.CrossRefGoogle Scholar
  12. 12.
    A. P. Hughes, U. Thiele, and A. J. Archer. J. Chem. Phys., 2015, 142, 074702.CrossRefPubMedGoogle Scholar
  13. 13.
    F. Bottiglione, G. Carbone, and B. N. J. Persson. J. Chem. Phys., 2015, 143, 134705.CrossRefPubMedGoogle Scholar
  14. 14.
    Sh. Chen, J. Wang, T. Ma, and D. Chen. J. Chem. Phys., 2014, 140, 114704.CrossRefPubMedGoogle Scholar
  15. 15.
    H. Onishi, K. Fukui, and Y. Iwasawa. Bull. Chem. Soc. Jpn., 1995, 68, 2447.CrossRefGoogle Scholar
  16. 16.
    R. Bechstein, C. Gonzalez, J. Schutte, P. Jelinek, R. Perez, and A. Kuhnle. Nanotechnology, 2009, 20, 505703.CrossRefPubMedGoogle Scholar
  17. 17.
    M. Cardellach, A. Verdaguer, J. Santiso, and J. Fraxedas. J. Chem. Phys., 2010, 132, 234708.CrossRefPubMedGoogle Scholar
  18. 18.
    D. A. Kunkel, J. Hooper, S. Simpson, D. P. Miller, L. Routaboul, P. Braunstein, B. Doudin, S. Beniwal, P. Dowben, R. Skomski, E. Zurek, and A. Enders. J. Chem. Phys., 2015, 142, 101921.CrossRefPubMedGoogle Scholar
  19. 19.
    C. A. Amadei, Ch.-Yu. Lai, D. Heskes, and M. Chiesa. J. Chem. Phys., 2014, 141, 084709.CrossRefPubMedGoogle Scholar
  20. 20.
    M. Naderian and A. Groβ. J. Chem. Phys., 2016, 145, 094703.CrossRefPubMedGoogle Scholar
  21. 21.
    B. Glatz and S. Sarupria. J. Chem. Phys., 2016, 145, 211924.CrossRefPubMedGoogle Scholar
  22. 22.
    Z. Futera and N. J. English. J. Chem. Phys., 2016, 145, 204706.CrossRefPubMedGoogle Scholar
  23. 23.
    S. J. Cox, Sh. M. Kathmann, B. Slater, and A. Michaelides. J. Chem. Phys., 2015, 142, 184704.CrossRefPubMedGoogle Scholar
  24. 24.
    S. J. Cox, Sh. M. Kathmann, B. Slater, and A. Michaelides. J. Chem. Phys., 2015, 142, 184705.CrossRefPubMedGoogle Scholar
  25. 25.
    L. Lupi, N. Kastelowitz, and V. Molinero. J. Chem. Phys., 2014, 141, 18C508.CrossRefGoogle Scholar
  26. 26.
    G. G. Malenkov, J. Struct. Chem., 2017, 58(1),159.CrossRefGoogle Scholar
  27. 27.
    S. Sakong, K. Forster-Tonigold, and A. Groβ. J. Chem. Phys., 2016, 144. P.194701.CrossRefPubMedGoogle Scholar
  28. 28.
    Ch. Wang, H. Lu, Zh. Wang, P. Xiu, B. Zhou, G. Zuo, R. Wan, J. Hu, and H. Fang. Phys. Rev. Lett., 2009, 103, 137801.CrossRefPubMedGoogle Scholar
  29. 29.
    G. C. Sosso, G. A. Tribello, A. Zen, Ph. Pedevilla, and A. Michaelides. J. Chem. Phys., 2016, 145, 211927.CrossRefPubMedGoogle Scholar
  30. 30.
    W. Xu, Z. Lan, B. L. Peng, R. F. Wen, and X. H. Ma. J. Chem. Phys., 2015, 142, 054701.CrossRefPubMedGoogle Scholar
  31. 31.
    S. V. Shevkunov. J. Exp. Theor. Phys., 2008, 107(6),965.CrossRefGoogle Scholar
  32. 32.
    S. V. Shevkunov. Colloid J., 2013, 75(4),444.CrossRefGoogle Scholar
  33. 33.
    S. V. Shevkunov. Colloid J., 2014, 76(2),221.CrossRefGoogle Scholar
  34. 34.
    S. V. Shevkunov. Russ. J. Electrochem., 2006, 42(1),8.CrossRefGoogle Scholar
  35. 35.
    S. V. Shevkunov. Colloid J., 2006, 68(5),632.CrossRefGoogle Scholar
  36. 36.
    S. V. Shevkunov. Russ. J. Phys. Chem., 2006, 80(5),769.CrossRefGoogle Scholar
  37. 37.
    S. V. Shevkunov. Colloid J., 2014, 76(6),753.CrossRefGoogle Scholar
  38. 38.
    S. V. Shevkunov. Colloid J., 2016, 78(1),137.CrossRefGoogle Scholar
  39. 39.
    S. V. Shevkunov. Dokl. Phys., 2010, 55(8),399.CrossRefGoogle Scholar
  40. 40.
    S. V. Shevkunov. Russ. J. Electrochem., 2014, 50(12), 1118.CrossRefGoogle Scholar
  41. 41.
    S. V. Shevkunov. J. Exp. Theor. Phys., 2009, 108(3),447.CrossRefGoogle Scholar
  42. 42.
    S. V. Shevkunov. Russ. J. Phys. Chem. A, 2016, 90(5), 1015.CrossRefGoogle Scholar
  43. 43.
    S. V. Shevkunov. Russ. J. Phys. Chem. A, 2011, 85(9), 1584.CrossRefGoogle Scholar
  44. 44.
    J.-M. Soudan, M. Basire, J.-M. Mestdagh, and C. Angelié. J. Chem. Phys., 2011, 135, 144109.CrossRefPubMedGoogle Scholar
  45. 45.
    S. Zamith, P. Labastie, and J.-M. L'Hermite. J. Chem. Phys., 2013, 138, 034304.CrossRefPubMedGoogle Scholar
  46. 46.
    J. Gelman-Constantin, M. A. Carignano, I. Szleifer, E. J. Marceca, and H. R. Corti. J. Chem. Phys., 2010, 133, 024506.CrossRefPubMedGoogle Scholar
  47. 47.
    Y. Shibuta and T. Suzuki. J. Chem. Phys., 2008, 129, 144102.CrossRefPubMedGoogle Scholar
  48. 48.
    J. Hernández-Rojas and B. S. González. J. Chem. Phys., 2006, 125, 224302.CrossRefPubMedGoogle Scholar
  49. 49.
    F. Chirot, P. Feiden, S. Zamith, P. Labastie, and J.-M. L'Hermite. J. Chem. Phys., 2008, 129, 164514.CrossRefPubMedGoogle Scholar
  50. 50.
    J. H. Taylor and B. N. Hale. Phys. Rev. B, 1993, 47(15), 9732.CrossRefGoogle Scholar
  51. 51.
    G. T. Barnes. Z. Angew. Math. Phys., 1963, 14(5),510.CrossRefGoogle Scholar
  52. 52.
    S. A. Pikin. Structural Transformations in Liquid Crystals [in Russian]. Moscow: Nauka, 1981.Google Scholar
  53. 53.
    G. G. Malenkov, J. Struct. Chem., 2016, 57(4),793.CrossRefGoogle Scholar
  54. 54.
    V. P. Voloshin and Y. I. Naberukhin, J. Struct. Chem., 2016, 57(3),497.CrossRefGoogle Scholar
  55. 55.
    S. V. Shevkunov, Dokl. Phys., 2011, 56(6),323.CrossRefGoogle Scholar
  56. 56.
    S. V. Shevkunov, Colloid J., 2012, 74(5),589.CrossRefGoogle Scholar
  57. 57.
    S. V. Shevkunov, Colloid J., 2012, 74(5),608.CrossRefGoogle Scholar
  58. 58.
    S. V. Shevkunov, Russ. J. Phys. Chem. A, 2013, 87(10), 1654.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations