Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 3, pp 589–594 | Cite as

Crystal Structure and Catalytic Property of an Oxidomolybdenum(VI) Complex Derived from N′-(2-Hydroxy-3,5-Di-Tert-Butylbenzylidene)-4-Methylbenzohydrazide

  • D.-L. Peng
Article
  • 8 Downloads

Abstract

With a tridentate Schiff base ligand N′-(2-hydroxy-3,5-di-tert-butylbenzylidene)-4-methylbenzohydrazide (H2L) and MoO2(acac)2, an oxidomolybdenum(VI) complex is prepared and characterized by elemental analysis, IR spectroscopy and X-ray structure determination. The complex crystallizes in the monoclinic space group C2/c with unit cell dimensions a = 20.187(2) Å, b = 7.9094(8) Å, c = 33.233(3) Å, β = 97.394(2)°, V = 5262.1(9) Å3, Z = 8, R1 = 0.0491, and wR2 = 0.1322. The single crystal X-ray diffraction analysis reveals that the Mo atom is coordinated by NOO donor atoms of the Schiff base ligand, the methanol O atom, and two oxo groups in an octahedral coordination. Catalytic oxidation of the complex on some olefins is performed.

Keywords

Schiff base molybdenum complex crystal structure catalytic property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.(a)
    S. Shit, D. Saha, D. Saha, T. N. G. Row, and C. Rizzoli. Inorg. Chim. Acta, 2014, 415, 103–110CrossRefGoogle Scholar
  2. (b).
    T. R. Amarante, P. Neves, A. C. Gomes, M. M. Nolasco, P. Ribeiro-Claro, A. C. Coelho, A. A. Valente, F. A. A. Paz, S. Smeets, L. B. McCusker, M. Pillinger, and I. S. Goncalves. Inorg. Chem., 2014, 53, 2652–2665CrossRefGoogle Scholar
  3. (c).
    A. C. Gomes, S. M. Bruno, M. Abrantes, C. I. R. Magalhaes, I. S. Goncalves, A. A. Valente, and M. Pillinger. J. Organomet. Chem., 2014, 760, 205–211CrossRefGoogle Scholar
  4. (d).
    B. Terfassa, J. A. Schachner, P. Traar, F. Belaj, and N. C. M. Zanetti. Polyhedron, 2014, 75, 141–145CrossRefGoogle Scholar
  5. (e).
    A. J. Musacchio, L. Q. Nguyen, G. H. Beard, and R. R. Knowles. J. Am. Chem. Soc., 2014, 136, 12217–12220.CrossRefGoogle Scholar
  6. 2.(a)
    F. Wang, C.-H. Lu, and I. Willner. Chem. Rev., 2014, 114, 2881–2941CrossRefGoogle Scholar
  7. (b).
    L. M. D. R. S. Martins and A. J. L. Pombeiro. Coord. Chem. Rev., 2014, 265, 74–88CrossRefGoogle Scholar
  8. (c).
    A. Quintard and J. Rodriguez. Angew. Chem. Int. Ed., 2014, 53, 4044–4055CrossRefGoogle Scholar
  9. (d).
    K. Riener, S. Haslinger, A. Raba, M. P. Hogerl, M. Cokoja, W. A. Herrmann, and F. E. Kuhn. Chem. Rev., 2014, 114, 5215–5272CrossRefGoogle Scholar
  10. (e).
    M. Amini, M. M. Haghdoost, and M. Bagherzadeh. Coord. Chem. Rev., 2014, 268, 83–100.CrossRefGoogle Scholar
  11. 3.(a)
    M. Bagherzadeh, R. Latifi, L. Tahsini, V. Amani, A. Ellern, and L. K. Woo. Polyhedron, 2009, 28, 2517–2521CrossRefGoogle Scholar
  12. (b).
    M. Bagherzadeh, L. Tahsini, R. Latifi, A. Ellern, and L. K. Woo. Inorg. Chim. Acta, 2008, 361, 2019–2024CrossRefGoogle Scholar
  13. (c).
    M. Abrantes, I. S. Gonçalves, M. Pillinger, C. Vurchio, F. M. Cordero, and A. Brandi. Tetrahedron Lett., 2011, 52, 7079–7082CrossRefGoogle Scholar
  14. (d).
    H. Arzoumanian. Coord. Chem. Rev., 1998, 178-180, 191–202.CrossRefGoogle Scholar
  15. 4.(a)
    M. Bagherzadeh, M. Amini, A. Ellern, and L. K. Woo. Inorg. Chem. Commun., 2012, 15, 52–55CrossRefGoogle Scholar
  16. (b).
    M. Bagherzadeh, M. Amini, H. Parastar, M. Jalali-Heravi, A. Ellern, and L. K. Woo. Inorg. Chem. Commun., 2012, 20, 86–89.CrossRefGoogle Scholar
  17. 5.
    G. M. Sheldrick. SHELXL-97, Program for the Refinement of Crystal Structures. Göttingen (Germany): Univ. of Göttingen, 1997.Google Scholar
  18. 6.
    R. Pagadala, P. Ali, and J. S. Meshram. J. Coord. Chem., 2009, 62, 4009–4017.CrossRefGoogle Scholar
  19. 7.
    S. K. Maiti, K. M. AbdulMalik, and R. Bhattacharyya. Inorg. Chem. Commun., 2004, 7, 823–828.CrossRefGoogle Scholar
  20. 8.
    N. Gharah, S. Chakraborty, A. K. Mukherjee, and R. Bhattacharyya. Inorg. Chim. Acta, 2009, 362, 1089–1100.CrossRefGoogle Scholar
  21. 9.
    S. Gupta, A. K. Barik, S. Pal, A. Hazra, S. Roy, R. J. Butcher, and S. K. Kar. Polyhedron, 2007, 26, 133–141.CrossRefGoogle Scholar
  22. 10.(a)
    S. Rayati, N. Rafiee, and A. Wojtczak. Inorg. Chim. Acta, 2012, 386, 27–35CrossRefGoogle Scholar
  23. (b).
    M. Bagherzadeh, R. Latifi, L. Tahsini, V. Amani, A. Ellern, and L. K. Woo. Polyhedron, 2009, 28, 2517–2521CrossRefGoogle Scholar
  24. (c).
    N. K. Ngan, K. M. Lo, and C. S. R. Wong. Polyhedron, 2011, 30, 2922–2932.CrossRefGoogle Scholar
  25. 11.(a)
    S. K. Maiti, S. Dinda, S. Banerjee, A. K. Mukherjee, and R. Bhattacharyya. Eur. J. Inorg. Chem., 2008, 2038–2051Google Scholar
  26. (b).
    M. Bagherzadeh, M. Amini, H. Parastar, M. Jalali-Heravi, A. Ellern, and L. K. Woo. Inorg. Chem. Commun., 2012, 20, 86–89.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Key Laboratory of Surface and Interface Science of Henan Province, School of Material and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouP. R. China
  2. 2.Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological RestorationZhengzhou University of Light IndustryZhengzhouP. R. China

Personalised recommendations