Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 3, pp 541–549 | Cite as

Theoretical Study of Tautomerization in 1,5-Dimethyl-6-Thioxo-1,3,5-Triazinane-2,4-Dione

  • N. Shajari
  • R. Ghiasi
Article
  • 12 Downloads

Abstract

In this work, the tautomeric transformations of a 1,5-dimethyl-6-thioxo-1,3,5-triazinane-2,4-dione molecule are explored at the M062X/6-311G(d,p) level of theory in gas and solution phases. These calculations show that the 1,5-dimethyl-6-thioxo-1,3,5-triazinane-2,4-dione isomer is more stable than its tautomer (4-hydroxy-1,5-dimethyl-6-thioxo-5,6-dihydro-1,3,5-triazin-2(1H)-one) in gas and solution phases. The frontier molecular orbitals and band gap energy calculations are performed at the M062X/6-311G(d,p) level in gas and various solvents. Solvent effects are analyzed using the self-consistent reaction field method based on the polarizable continuum model in chloroform, chlorobenzene, tetrahydrofurane, dichloromethane, and quinoline. The solvent effect on the N–H and C=O vibrations is explored. Also, natural bond orbital (NBO) analysis was used to understand the structure and bonding of the molecule.

Keywords

triazines heterocycles DFT calculation Kirkwood–Bauer–Magat (KBM) equation NBO analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Abdel-Rahman, J. M. Morsy, F. Hanafy, and H. A. Amene. Pharmazie, 1999, 54, Part I,347.Google Scholar
  2. 2.
    A. Agarwal, K. Srivastava, S. K. Puri, and P. M. S. Chauhan. Bioorg. Med. Chem. Lett., 2005, 15,531.CrossRefGoogle Scholar
  3. 3.
    A. Baliani, G. J. Bueno, M. L. Stewart, V. Yardley, R. Brun, M. P. Barrett, and I. H. Gilbert. J. Med. Chem., 2005, 48, 5570.CrossRefGoogle Scholar
  4. 4.
    W. P. Heilman, R. D. Heilman, J. A. Scozzie, R. J. Wayner, J. M. Gullo, and Z. S. Riyan. J. Med. Chem., 1979, 22,671.CrossRefGoogle Scholar
  5. 5.
    B. S. Holla, R. Gonsalves, S. Rao, S. Henoy, and H. N. Gopalkrishna. Farmaco, 2001, 56,899.CrossRefGoogle Scholar
  6. 6.
    M. Kidwai, Y. Goel, and R. Kumor. Indian J. Chem., 1998, 37b,174.Google Scholar
  7. 7.
    E. Hollink, E. E. Simanek, and D. Bergbreiter. Tetrahedron Lett., 2005, 46, 2005.CrossRefGoogle Scholar
  8. 8.
    A. Herrera, R. P. Martínez-Alvarez, M. Chioua, and R. Chioua. Synthesis, 2004,503.Google Scholar
  9. 9.
    E. M. Smolin and L. Rapoport. s-Triazine and Derivatives in The Chemistry of Heterocyclic Compounds. New York: Interscience, 1959.CrossRefGoogle Scholar
  10. 10.
    M. E. Quirke, A. R. Katritzky, and C. W. Rees. 1,3,5-Triazines. Comprehensive Heterocyclic Chemistry. New York: Pergamon, 1984.Google Scholar
  11. 11.
    D. Bartholomew. 1,3,5-Triazines. In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon, 1996.Google Scholar
  12. 12.
    G. Giacomelli, A. Porcheddu, and L. D. Luca. Curr.Org. Chem., 2004, 8, 1497.CrossRefGoogle Scholar
  13. 13.
    B. J. Foster, B. J. Harding, B. Leyland-Jones, and D. Hoth. Cancer Treat. Rev., 1986, 38,197.CrossRefGoogle Scholar
  14. 14.
    B. Tranchand, G. Catimel, C. Lucas, M. Sarkany, G. Bastian, E. Evene, J. P. Guastalla, S. Negrier, P. Rebattu, and A. Dumortier. Cancer Chemother. Pharmacol, 1998, 41,281.CrossRefGoogle Scholar
  15. 15.
    M. Ono, N. Kawahara, D. Goto, Y. Wakabayashi, S. Ushiro, S. Yoshida, H. Izumi, M. Kuwano, and Y. Sato. Cancer Res., 1996, 56, 1512.Google Scholar
  16. 16.
    V. K. Pandey, S. Tusi, Z. Tusi, M. Joshi, and S. Bajpai. Acta Pharm., 2004, 54,1.Google Scholar
  17. 17.
    J. R. Porter, S. C. Archibald, J. A. Brown, K. Childs, D. Critchley, J. C. Head, B. Hutchinson, T. A. H. Barton, M. K. Robinson, and A. Shock. Bioorg. Med. Chem. Lett., 2002,12.Google Scholar
  18. 18.
    N. P. Jensen, A. L. Ager, R. A. Bliss, C. J. Canfield, B. M. Kotecka, K. H. Rieckmann, J. Terpinski, and D. P. Jacobus. J. Med. Chem., 2011, 44, 3925.CrossRefGoogle Scholar
  19. 19.
    A. Agarwal, K. Srivastava, S. K. Puri, and P. M. S. Chauhan. Bioorg. Med. Chem. Lett., 2005, 15,531.CrossRefGoogle Scholar
  20. 20.
    K. Srinivas, U. Srinivas, K. Harakishore, R. V. Jayathirha, K. Bhanuprakash, and U. S. N. Murthy. Bioorg. Med. Chem. Lett., 2005, 15, 1121.CrossRefGoogle Scholar
  21. 21.
    J. L. Silen, A. T. Lu, D. W. Solas, M. A. Gore, D. Maclean, N. H. Shah, L. M. Coffin, N. S. Bhinderwala, Y. Wang, and K. L. Tsutsui. Antimicrob. Agents Chemother., 1998, 42, 1447.Google Scholar
  22. 22.
    C. Zhou, J. Min, Z. Liu, A. Young, H. Deshazer, T. Gao, Y. Chang, and N. R. Kallenbach. Med. Chem. Lett., 2008, 18, 1308.CrossRefGoogle Scholar
  23. 23.
    Z. E. Koc, H. Bingol, A. O. Saf, E. Torlak, and A. Coskun. J. Hazard. Mater., 2010, 183,251.CrossRefGoogle Scholar
  24. 24.
    B. L. Mylari, G. J. Withbroe, D. A. Beebe, N. S. Brackett, E. L. Conn, J. B. Coutcher, P. J. Oates, and W. J. Zembrowski. Bioorg. Med. Chem., 2003, 11, 4179.CrossRefGoogle Scholar
  25. 25.
    B. R. Henke, T. G. Consler, N. Go, R. L. Hale, D. R. Hohman, S. A. Jones, A. T. Lu, L. B. Moore, J. T. Moore, and L. A. Orband-Miller. J. Med. Chem., 2002, 45, 5492.CrossRefGoogle Scholar
  26. 26.
    B. Klenke, M. Stewart, M. P. Barrett, R. Brun, and I. H. Gilbert. J. Med. Chem., 2001, 44, 3440.CrossRefGoogle Scholar
  27. 27.
    G. D'Atri, P. Gomarasca, G. Resnati, G. Tronconi, C. Scolastico, and C. R. Sirtori. J. Med. Chem., 1984, 27, 1621.CrossRefGoogle Scholar
  28. 28.
    A. Ramazani, Y. Ahmadi, M. Rouhani, N. Shajari, and A. Souldozi. Heteroat. Chem., 2010, 1,368.CrossRefGoogle Scholar
  29. 29.
    A. Ramazani, N. Shajari, A. Mahyari, and Y. Ahmadi. Mol. Divers, 2011, 15,521.CrossRefGoogle Scholar
  30. 30.
    N. Shajari, A. R. Kazemizadeh, and A. Ramazani. J. Serb. Chem. Soc., 2012, 77, 1175.CrossRefGoogle Scholar
  31. 31.
    N. Shajari, A. R. Kazemizadeh, and A. Ramazani. Turk. J. Chem., 2015, 39,874.CrossRefGoogle Scholar
  32. 32.
    A. Ramazani, Y. Ahmadi, M. Rouhani, N. Shajari, and A. Souldozi. Heteroat. Chem., 2010, 21,368.CrossRefGoogle Scholar
  33. 33.
    N. Shajari, A. R. Kazemizadeh, A. Ramazani, S. W. Joo, K. Slepokura, T. Lis, and A. Souldozi. J. Struct. Chem., 2015, 56(4), 806–810.CrossRefGoogle Scholar
  34. 34.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian 09, Revision A.02. Wallingford CT: Gaussian, Inc., 2009.Google Scholar
  35. 35.
    R. Krishnan, J. S. Binkley, R. Seeger, and A. Pople. J. Chem. Phys., 1980, 72,650.CrossRefGoogle Scholar
  36. 36.
    Y. Zhao and D. G. Truhla. J. Phys. Chem., 2006, 110, 5121.CrossRefGoogle Scholar
  37. 37.
    A. E. Reed, L. A. Curtiss, and F. Weinhold. Chem. Rev., 1988, 88,899.CrossRefGoogle Scholar
  38. 38.
    E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold. NBO 3.1.Google Scholar
  39. 39.
    K. Wolinski, J. F. Hinton, and P. Pulay. J. Am. Chem. Soc., 1990, 112, 8251.CrossRefGoogle Scholar
  40. 40.
    D. Li, Y. Wanga, and K. Han. Coord. Chem. Rev., 2012, 256, 1137.CrossRefGoogle Scholar
  41. 41.
    G. Song, Y. Su, R. A. Periana, R. H. Crabtree, K. Han, H. Zhang, and X. Li. Angew. Chem. Int. Ed., 2010, 49,912.CrossRefGoogle Scholar
  42. 42.
    H. Wang, Y. Wang, K.-L. Han, and X.-J. Peng. J. Org. Chem., 2005, 70, 4910.CrossRefGoogle Scholar
  43. 43.
    D. Li, X. Huang, K. Han, and C.-G. Zhan. J. Am. Chem. Soc., 2011, 133, 7416.CrossRefGoogle Scholar
  44. 44.
    S. W. Rick and S. J. Stuart. Rev. Comput. Chem., 2002, 18,89.Google Scholar
  45. 45.
    R. G. Parr, Lv. Szentpaly, and S. Liu. J. Am. Chem. Soc., 1999, 121, 1922.CrossRefGoogle Scholar
  46. 46.
    P. K. Chattaraj and S. Giri. Annu. Rep. Prog. Chem., Sect. C, 2009, 105,13.CrossRefGoogle Scholar
  47. 47.
    J. Gavnholt, T. Olsen, M. Engelund, and J. Schiøtz. Phys. Rev. B, 2008, 78, 075441.CrossRefGoogle Scholar
  48. 48.
    R. G. Parr and R. G. Pearson. J. Am. Chem. Soc., 1983, 105, 7512.CrossRefGoogle Scholar
  49. 49.
    W. Yang and R. G. Parr. Proc. Natl. Acad. Sci. USA, 1985, 82, 6723.CrossRefGoogle Scholar
  50. 50.
    X.-F. Chen, J.-H. Bu, T. Yu, W. P. Lai, and Z.-X. Ge. Commun. Comput. Chem., 2013, 1,118.Google Scholar
  51. 51.
    L. Onsager. J. Am. Chem. Soc., 1936, 58.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Zanjan BranchIslamic Azad UniversityZanjanIran
  2. 2.Department of Chemistry, Faculty of Science, East Tehran BranchIslamic Azad UniversityQiam Dasht, TehranIran

Personalised recommendations