Journal of Structural Chemistry

, Volume 59, Issue 3, pp 520–528 | Cite as

First-Principles Study of the Structures and Electronic Properties of Nin–1Al (n = 2-20) Clusters

  • W. Song
  • B. Wang
  • H.-Q. Li
  • J.-L. Wang
  • C. -Z. HeEmail author


The electronic properties, such as binding energy, magnetic property, charge transfer, ionization potential, and electron affinity, of Nin–1Al (n = 2-20) neutral and ionic clusters are studied using the density functional theory calculations with the PBE exchange-correlation energy functional. The calculated total magnetic moments and ionization potential can decrease and increase with the addition of the Al atom, respectively. The calculated electron affinity has occurred with no significant change, except the Ni16Al cluster.


magnetic property charge transfer ionization potential electron affinity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Chikhaoui, K. Haddab, S. Bouarab, and A. Vega. J. Phys. Chem. A, 2011, 115, 13997–14005.CrossRefPubMedGoogle Scholar
  2. 2.
    Z. M. Ma and B. X. Li. Comput. Theor. Chem., 2015, 1068, 88–96.CrossRefGoogle Scholar
  3. 3.
    H. Q. Sun, Y. J. Bai, H. Y. Cheng, B. L. Wang, and G. H. Wang. J. Mol. Struct., 2015, 1031, 22–29.CrossRefGoogle Scholar
  4. 4.
    J. Q. Wen, Z. Y. Jiang, J. Q. Li, L. K. Cao, and S. Y. Chu. Int. J. Quant. Chem., 2010, 110, 1368–1375.Google Scholar
  5. 5.
    J. Q. Wen, Z. Y. Jiang, Y. Q. Hou, and J. Q. Li. J. Mol. Struct. (THEOCHEM), 2010, 949, 91–95.CrossRefGoogle Scholar
  6. 6.
    X. Zhang, B. X. Li, Z. W. Ma, and J. J. Gu. Sci. World J., 2013, 468327, 1–9.Google Scholar
  7. 7.
    M. D. Deshpande, R. Pandey, M. A. Blanco, and A. Khalkar. J. Nanopart. Res., 2010, 12, 1129–1136.CrossRefGoogle Scholar
  8. 8.
    V. Shah and D. G. Kanhere. Phys. Rev. B, 2009, 80, 125419(1)–(8).CrossRefGoogle Scholar
  9. 9.
    F. Y. Hao, Y. F. Zhao, X. Y. Li, and F. L. Liu. J. Mol. Struc. (THEOCHEM), 2007, 807, 153–158.CrossRefGoogle Scholar
  10. 10.
    C. L. Luo. Modell. Simul. Mater. Sci. Eng., 2000, 8, 95–101.CrossRefGoogle Scholar
  11. 11.
    Y. Xiang, D. Y. Sun, and X. G. Gong. J. Phys. Chem. A, 2000, 104, 2746–2751.CrossRefGoogle Scholar
  12. 12.
    C. L. Luo. New J. Phys., 2002, 4, 10.1–10.8.CrossRefGoogle Scholar
  13. 13.
    W. Song, W. C. Lu, Q. J. Zang, C. Z. Wang, and K. M. Ho. Int. J. Quant. Chem., 2012, 112, 1717–1724.CrossRefGoogle Scholar
  14. 14.
    W. Song, W. C. Lu, C. Z. Wang, and K. M. Ho. Comput. Theor. Chem., 2011, 978, 41–46.CrossRefGoogle Scholar
  15. 15.
    G. Kresse and J. Hafner. Phys. Rev. B, 1993, 47, 558–561.CrossRefGoogle Scholar
  16. 16.
    G. Kresse and J. Furthmuller. Phys. Rev. B, 1996, 54, 11169–11186.CrossRefGoogle Scholar
  17. 17.
    J. T. Lau, A. Föhlisch, M. Martins, R. Nietubyc, M. Reif, and W. Wurth. New J. Phys., 2002, 4, 98.1–98.12.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • W. Song
    • 1
  • B. Wang
    • 1
  • H.-Q. Li
    • 3
  • J.-L. Wang
    • 1
  • C. -Z. He
    • 2
    Email author
  1. 1.Physics and Electronic Engineering DepartmentXinxiang UniversityXinxiangP. R. China
  2. 2.Physics and Electronic Engineering CollegeNanyang Normal UniversityNanyangP. R. China
  3. 3.School of International Education and ExchangeXinxiang UniversityXinxiangP. R. China

Personalised recommendations