Advertisement

Journal of Structural Chemistry

, Volume 58, Issue 8, pp 1633–1640 | Cite as

X-ray spectroscopic diagnostics of the structure of quantum dots based on zinc and manganese sulfides and oxides

  • I. A. Pankin
  • A. N. Kravtsova
  • O. E. Polozhentsev
  • A. P. Budnyk
  • A. A. Tsaturyan
  • A. L. Bugaev
  • A. L. Trigub
  • A. V. Soldatov
Article

Abstract

The microwave synthesis of quantum dots (QDs) based on zinc and manganese sulfides and oxides in a water-ethanol medium is proposed. The sample synthesized is characterized by X-ray diffraction (XRD), photoluminescence, X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopy. The XRD analysis shows the presence of the hexagonal ZnS phase of wurtzite type with an average nanocrystal size of 4.5 nm and manganese oxide Mn3O4 (hausmannite phase) with an average particle size of 12.5 nm in the sample under study, but does not provide the unambiguous conclusion about the doping of ZnS nanoparticles with Mn atoms. Although the analysis of the zinc and manganese K-edge XANES spectra suggests that the synthesized QD sample is a ZnMnS solid solution (~11%), a significant amount of a by-product (manganese oxide Mn3O4 of the hausmannite phase, ~89%) is formed.

Keywords

quantum dots zinc sulfide doping microwave synthesis local atomic and electronic structures synchrotron radiation XANES spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Trindade, P. O′Brien, and N. L. Pickett, Chem. Mater., 13, 3843 (2001).CrossRefGoogle Scholar
  2. 2.
    S. Coe-Sullivan, Nature Photon., 3, 315 (2009).CrossRefGoogle Scholar
  3. 3.
    S. Kuchibhatla, A. S. Karakoti, D. Bera, and S. Seal, Prog. Mater. Sci., 52, 699 (2007).CrossRefGoogle Scholar
  4. 4.
    Y. Wang and L. Chen, Nanomedicine: NBM, 7, 385 (2011).CrossRefGoogle Scholar
  5. 5.
    X. Fang, T. Zhai, U. K. Gautam, et al., Prog. Mater Sci., 56, 175 (2011).CrossRefGoogle Scholar
  6. 6.
    V. M. de Almeida, A. Mesquita, A. O. de Zevallos, et al., J. Alloys Compd., 655, 406 (2016).CrossRefGoogle Scholar
  7. 7.
    B. B. Srivastava, S. Jana, and N. S. Karan, J. Phys. Chem. Lett., 1, No. 9, 1454 (2010).CrossRefGoogle Scholar
  8. 8.
    M. A. Malik, P. O′Brien, and N. Revaprasadu, J. Mater. Chem., 11, 2382 (2001).CrossRefGoogle Scholar
  9. 9.
    Y. He, H.-F. Wang, and X.-P. Yan, Anal. Chem., 80, 3832 (2008).CrossRefGoogle Scholar
  10. 10.
    S. Horoz, Q. Dai, F. S. Maloney, et al., Phys. Rev. Appl., 3, 024011 (2015).CrossRefGoogle Scholar
  11. 11.
    Y. Wang, B. Wu, C. Yang, et al., Small, 12, No. 4, 534 (2016).CrossRefGoogle Scholar
  12. 12.
    J. Cao, J. Yang, Y. Zhang, et al., J. Alloys Compd., 486, 890 (2009).CrossRefGoogle Scholar
  13. 13.
    G. Bunker, Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy, Cambridge University Press, UK, Cambridge (2011).Google Scholar
  14. 14.
    J. Cao, J. Yang, Y. Zhang, et al., Opt. Mater., 32, 643 (2010).CrossRefGoogle Scholar
  15. 15.
    O. M. Ozkendir, S. Yildirimcan, K. Ocakoglu, and A. Yuzer, Prog. Nat. Sci.: Mat. Int., 26, 347 (2016).CrossRefGoogle Scholar
  16. 16.
    A. N. Kravtsova, K. A. Lomachenko, S. A. Suchkova, et al., Bull. Russ. Acad. Sci.: Phys., 79, No. 11, 1413 (2015).CrossRefGoogle Scholar
  17. 17.
    A. N. Kravtsova, M. A. Soldatov, S. A. Suchkova, et al., J. Struct. Chem., 56, No. 3, 517–522 (2015).CrossRefGoogle Scholar
  18. 18.
    A. N. Kravtsova, A. P. Budnyk, I. A. Pankin, et al., J. Struct. Chem., 58, No. 1, 45–52 (2017).CrossRefGoogle Scholar
  19. 19.
    A. N. Kravtsova, I. A. Pankin, A. P. Budnyk, et al., J. Struct. Chem., 57, No. 5, 926–933 (2016).CrossRefGoogle Scholar
  20. 20.
    A. N. Kravtsova, I. A. Pankin, M. A. Soldatov, et al., J. Struct. Chem., 57, No. 7, 1422 (2016).CrossRefGoogle Scholar
  21. 21.
    Y. Li, Y. Ding, Y. Zhang, and Y. Qian, J. Phys. Chem. Solid., 60, 13 (1999).CrossRefGoogle Scholar
  22. 22.
    A. A. Guda, M. Rovezzi, M. Kaidashev, et al., J. Anal. At. Spectrom., 28, 1629 (2013).CrossRefGoogle Scholar
  23. 23.
    Q. Liu, W. Yan, H. Wei, et al., Phys. Rev. B, 77, 245211 (2008).CrossRefGoogle Scholar
  24. 24.
    J. V. Lockard, S. Kabehie, J. I. Zink, et al., J. Phys. Chem. B, 114, No. 45, 14521 (2010).CrossRefGoogle Scholar
  25. 25.
    I. Alperovich, G. Smolentsev, D. Moonshiram, et al., J. Am. Chem. Soc., 133, No. 39, 15786 (2011).CrossRefGoogle Scholar
  26. 26.
    A. A. Guda, I. A. Pankin, A. L. Bugaev, et al., Bull. Russ. Acad. Sci.: Phys., 79, No. 1, 139 (2015).CrossRefGoogle Scholar
  27. 27.
    O. E. Polozhentsev, S. P. Kubrin, V. V. Butova, et al., J. Struct. Chem., 57, No. 7, 1459–1468 (2016).CrossRefGoogle Scholar
  28. 28.
    M. A. Kremennaya, M. A. Soldatov, V. A. Stretsov, et al., J. Phys. Conf. Ser., 712, No. 1, 012138 (2016).CrossRefGoogle Scholar
  29. 29.
    A. Bianconi, XANES spectroscopy, in: X-ray Absorption: Principles, Applications and Techniques of EXAFS, SEXAFS and XANES, R. Prins and D. C. Koningsberger (eds.), Wiley, New York (1988).Google Scholar
  30. 30.
    Yu. Yu. Lurie, Handbook of Analytical Chemistry [in Russian], Khimiya, Moscow (1979).Google Scholar
  31. 31.
    E. H. Kisi and M. M. Elcombe, Acta Crystallogr. C, 45, 1867 (1989).CrossRefGoogle Scholar
  32. 32.
    J. J. Rehr, J. J. Kas, F. D. Vila, et al., Phys. Chem. Chem. Phys., 12, 5503 (2010).CrossRefGoogle Scholar
  33. 33.
    J. J. Rehr, J. J. Kas, M. P. Prange, et al., C. R. Phys., 10, No. 6, 548 (2009).CrossRefGoogle Scholar
  34. 34.
    K. Lawniczak-Jablonska, R. J. Iwanowski, Z. Golacki, et al., Phys. Rev B, 53, 1119 (1996).CrossRefGoogle Scholar
  35. 35.
    http://www.ung.si/~arcon/xas/exafs/exafs3-2.htm.Google Scholar
  36. 36.
    M. Newville, J. Synchrotron Radiat., 8, 322 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. A. Pankin
    • 1
    • 2
  • A. N. Kravtsova
    • 1
  • O. E. Polozhentsev
    • 1
  • A. P. Budnyk
    • 1
  • A. A. Tsaturyan
    • 3
  • A. L. Bugaev
    • 1
    • 2
  • A. L. Trigub
    • 4
  • A. V. Soldatov
    • 1
  1. 1.Smart Materials Research CenterRostov-on-DonRussia
  2. 2.Department of Chemistry and NIS Interdepartmental CenterUniversity of TorinoTurinItaly
  3. 3.Research Institute of Physical and Organic ChemistrySouthern Federal UniversityRostov-on-DonRussia
  4. 4.National Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations