Journal of Structural Chemistry

, Volume 58, Issue 7, pp 1403–1410 | Cite as

In situ analysis of the formation steps of gold nanoparticles by oleylamine reduction

  • M. V. Kirichkov
  • A. A. Guda
  • A. P. Budnyk
  • T. A. Lastovina
  • A. L. Bugaev
  • V. V. Shapovalov
  • Yu. V. Rusalev
  • A. V. Chernyshev
  • A. V. Soldatov


A colloidal solution of gold nanoparticles is synthesized with the use of sodium tetrachloroaurate(III) as a precursor, oleylamine as a reducer and surfactant, and 1-octadecene as a solvent. Reaction stages are analyzed in situ by optical (UV-vis) absorption spectroscopy with a simultaneous analysis of particle sizes by dynamic light scattering and X-ray absorption near edge spectroscopy for the analysis of the gold oxidation state. After the synthesis the size of obtained nanoparticles is determined by transmission electron microscopy. The analysis of the obtained experimental data reveals the presence of three main steps in the reduction reaction mechanism, corresponding to Au3+, Au+, Au0, which enables the construction of the reaction model. The reaction mechanism involves the formation of gold(I) complexes with oleylamine, followed by polymerization and the formation of gold nanoclusters coated with oleylamine.


TEM DLS XANES spectroscopy UV-vis gold nanoparticles oleylamine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Q. A. Pankhurst, N. T. K. Thanh, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys., 42, 224001 (2009).CrossRefGoogle Scholar
  2. 2.
    D. Astruc, F. Lu., and J. R. Aranzaes, Angew. Chem., Int. Ed., 44, 7852 (2005).CrossRefGoogle Scholar
  3. 3.
    R. Narayanan and M. A. El-Sayed, J. Phys. Chem. B, 109, 12663 (2005).CrossRefGoogle Scholar
  4. 4.
    H. Bonnemann and R. Richards, Europ. J. Inorg. Chem., 10, 2455 (2001).CrossRefGoogle Scholar
  5. 5.
    T. Hyeon, Chem. Commun., 8, 927 (2003).CrossRefGoogle Scholar
  6. 6.
    H. A. Atwater and A. Polman, Nat Mater., 9, 205 (2010).CrossRefGoogle Scholar
  7. 7.
    M. Treguer-Delapierre, F. Rocco, G. Lelong, A. Le Nestour, T. Cardinal, A. Maali, and B. Lounis, Solid State Sci., 7, 812 (2005).CrossRefGoogle Scholar
  8. 8.
    B. Hvolbæk, T. V. W. Janssens, B. S. Clausen, H. Falsig, C. H. Christensen, and J. K. Norskov, Nano Today, 2, 14 (2007).CrossRefGoogle Scholar
  9. 9.
    M. Wang, C. Wang, K. L. Young, L. L. Hao, M. Medved, T. Rajh, H. C. Fry, L. Y. Zhu, G. S. Karczmar, J. S. Jiang, N. M. Marcovic, and V. R. Stamencovic, Chem. Mater., 24, 2423 (2012).CrossRefGoogle Scholar
  10. 10.
    Y. Jin, X. F. Kang, Y. H. Song, B. L. Zhang, G. J. Cheng, and S. J. Dong, Analyt. Chem., 73, 2843 (2001).CrossRefGoogle Scholar
  11. 11.
    T. K. Sau and C. J. Murphy, J. Am. Chem. Soc., 126, 8648 (2004).CrossRefGoogle Scholar
  12. 12.
    I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, Nano Lett., 5, 829 (2005).CrossRefGoogle Scholar
  13. 13.
    L. A. Dykman and V. A. Bogatyrev, Usp. Khim., 76, No. 2, 199 (2007).CrossRefGoogle Scholar
  14. 14.
    J. Turkevich, P. C. Stevenson, and J. Hillier, Discuss. Faraday Soc., 11, 55 (1951).CrossRefGoogle Scholar
  15. 15.
    K. Zabetakis, W. E. Ghann, S. Kumar, and M. C. Daniel, Gold Bull., 45, 203 (2012).CrossRefGoogle Scholar
  16. 16.
    P. Jörg, K. Ralph, R. Martin, R. Uwe, R. Heinrich, F. T. Andreas, and E. Franziska, J. Phys.: Conf. Ser., 247, 012051 (2010).Google Scholar
  17. 17.
    A. D. Pomogailo, A. S. Rosenberg, and I. E. Uflyand, Khimiya [in Russian], Moscow (2000).Google Scholar
  18. 18.
    N. T. K. Thanh, N. Maclean, and S. Mahiddine, Chem. Rev., 114, 7610 (2014).CrossRefGoogle Scholar
  19. 19.
    T. Yao, Z. H. Sun, Y. Y. Li, Z. Y. Pan, H. Wei, Y. Xie, M. Nomura, Y. Niwa, W. S. Yan, Z. Y. Wu, Y. Jiang, Q. H. Liu, and S. Q. Wei, J. Am. Chem. Soc., 132, 7696 (2010).CrossRefGoogle Scholar
  20. 20.
    S. Gomez, K. Philippot, V. Colliere, B. Chaudret, F. Senocq, and P. Lecante, Chem. Commun., 19, 1945 (2000).CrossRefGoogle Scholar
  21. 21.
    T.-Y. Jeon, S. J. Yoo, H. Y. Park, S. K. Kim, S. Lim, D. Peck, D. H. Jung, and Y. E. Sung, Langmuir, 28, 3664 (2012).CrossRefGoogle Scholar
  22. 22.
    S. Mourdikoudis and L. M. Liz-Marzán, Chem. Mater., 25, 1465 (2013).CrossRefGoogle Scholar
  23. 23.
    Z. Huo, C. K. Tsung, W. Y. Huang, X. F. Zhang, and P. D. Yang, Nano Lett., 8, 2041 (2008).CrossRefGoogle Scholar
  24. 24.
    E. Koposova, A. Kisner, G. Shumilova, Y. Ermolenko, A. Offenhausser, and Y. Mourzina, J. Phys. Chem. C, 117, 13944 (2013).CrossRefGoogle Scholar
  25. 25.
    W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, Analyt. Chem., 79, 4215 (2007).CrossRefGoogle Scholar
  26. 26.
    A. M. Beale, M. T. T. Le, S. Hoste, and G. A. Sankar, Solid State Sci., 7, 1141 (2005).CrossRefGoogle Scholar
  27. 27.
    G. W. Coulston, Science, 275, 191 (1997).CrossRefGoogle Scholar
  28. 28.
    J. Zeng, Y. Y. Ma, U. Jeong, and Y. N. Xia, J. Mater. Chem., 20, 2290 (2010).CrossRefGoogle Scholar
  29. 29.
    M.-C. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004).CrossRefGoogle Scholar
  30. 30.
    B. Ahrens, P. G. Jones, and A. K. Fischer, Europ. J. Inorg. Chem., 1999, 1103 (1999).CrossRefGoogle Scholar
  31. 31.
    A. Kumar, S. Mandal, P. R. Selvakannan, R. Pasricha, A. B. Mandale, and M. Sastry, Langmuir, 19, 6277 (2003).CrossRefGoogle Scholar
  32. 32.
    X. Lu, H. Y. Tnan, B. A. Korgel, and Y. N. Xia, Chemistry (Weinheim an der Bergstrasse, Germany), 14, 1584 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. V. Kirichkov
    • 1
  • A. A. Guda
    • 1
  • A. P. Budnyk
    • 1
  • T. A. Lastovina
    • 1
  • A. L. Bugaev
    • 1
  • V. V. Shapovalov
    • 1
  • Yu. V. Rusalev
    • 1
  • A. V. Chernyshev
    • 2
  • A. V. Soldatov
    • 1
  1. 1.International Research Center “Smart Materials”Southern Federal UniversityRostov-on-DonRussia
  2. 2.Institute of Physical and Organic ChemistrySouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations