Advertisement

Journal of Structural Chemistry

, Volume 58, Issue 7, pp 1397–1402 | Cite as

Temperature effect on the structure and characteristics of ZnS-based quantum dots

  • A. N. Kravtsova
  • A. P. Budnik
  • A. A. Tsaturyan
  • I. A. Pankin
  • A. L. Bugaev
  • A. V. Soldatov
Article
  • 44 Downloads

Abstract

The synthesis of zinc sulfide (ZnS) quantum dots (QDs) by microwave heating in a water-ethanol medium is proposed. The effect of the synthesis temperature (80 °C, 100 °C, 120 °C, and 150 °C) on the QD characteristics is examined. Based on the analysis of X-ray diffraction profiles the conclusion is drawn that the hexagonal ZnS phase of wurtzite type with an average nanocrystal size of 2.6-3.7 nm forms in the synthesized QDs. The nanocrystallite size is found to increase with the QD synthesis heating temperature. The analysis of X-ray absorption spectra (XANES) at the zinc K-edge indicates a higher crystallinity of the QD samples prepared at higher synthesis temperatures. The combined analysis of X-ray diffraction profiles, optical diffuse reflectance spectra, and X-ray absorption spectra implies the following possible QD structure: the pure hexagonal ZnS phase of wurtzite type in the bulk of nanoparticles and the amorphous ZnO phase in the surface layer of nanoparticles.

Keywords

quantum dots zinc sulfide thiourea microwave synthesis fluorescence XANES spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. P. Bruchez, M. Moronne, P. Gin, et al., Science, 281, 2013 (1998).CrossRefGoogle Scholar
  2. 2.
    W. C. W. Chan and S. M. Nie, Science, 281, 2016 (1998).CrossRefGoogle Scholar
  3. 3.
    Q. J. Sun, Y. A. Wang, L. S. Li, et al., Nat. Photonics, 1, 717 (2007).CrossRefGoogle Scholar
  4. 4.
    M. Green, Semiconductor Quantum Dots, Cambridge: RCS Publishing, UK (2013).Google Scholar
  5. 5.
    T. K. Tran, W. Park, W. Tong, et al., J. Appl. Phys., 81, 2803 (1997).CrossRefGoogle Scholar
  6. 6.
    H. Chen, D. Shi, J. Qi, et al., Phys. Lett. A, 373, 371 (2009).CrossRefGoogle Scholar
  7. 7.
    H. Zeng, X. Li, H. Zhao, et al., RSC Advances., 5, No. 33, 25717 (2015).CrossRefGoogle Scholar
  8. 8.
    A. Guleria, A. K. Singh, M. C. Rath, and S. Adhikari, Mater. Res. Express, 2, No. 4, 045006 (2015).CrossRefGoogle Scholar
  9. 9.
    Y. Xin, X. Yang, Z. Zhang, et al., Chem. Cat. Chem., 3, 1772 (2011).Google Scholar
  10. 10.
    H. R. Rajabi and M. Farsi, Mater. Sci. Semicond. Process., 48, 14 (2016).CrossRefGoogle Scholar
  11. 11.
    M. Tayebi, M. Tavakkoli Yaraki, M. Ahmadieh, et al., J. Electron. Mater., 45, No. 11, 5671 (2016).CrossRefGoogle Scholar
  12. 12.
    M. Liu, H. Zhao, S. Chen, et. al., Inorg. Chim. Acta, 392, 236 (2012).CrossRefGoogle Scholar
  13. 13.
    C. M. Gonzalez, W.-C. Wu, J. B. Tracy, and B. Martin, Chem. Commun., 51, No. 15, 3087 (2015).CrossRefGoogle Scholar
  14. 14.
    Y. Yu, L. Xu, J. Chen, et al., Colloids Surf. B, 95, 247 (2012).CrossRefGoogle Scholar
  15. 15.
    J. Zhang, Q. Chen, W. Zhang, et al., Appl. Surf. Sci., 351, 655 (2015).CrossRefGoogle Scholar
  16. 16.
    D. Zhu, W. Li, H.-M. Wen, et al., Anal. Methods, 6, No. 18, 7489 (2014).CrossRefGoogle Scholar
  17. 17.
    A. N. Kravtsova, I. A. Pankin, M. A. Soldatov, et al., J. Struct. Chem., 57, No. 7, 1422 (2016).CrossRefGoogle Scholar
  18. 18.
    A. N. Kravtsova, I. A. Pankin, A. P. Budnik, et al., J. Struct. Chem., 57, No. 5, 926 (2016).CrossRefGoogle Scholar
  19. 19.
    V. F. Markov, L. N. Maskaeva, and P. N. Ivanov, Hydrochemical Deposition of Metal Sulfide Films: Simulation and Experiment [in Russian], UrO RAN, Ekaterinburg (2006).Google Scholar
  20. 20.
    T. V. Vinogradova, V. F. Markov, and L. N. Maskaeva, Russ. J. Gen. Chem., 80, No. 11, 2341 (2010).CrossRefGoogle Scholar
  21. 21.
    J. Tauc, Mater. Res. Bull., 3, 37 (1968).CrossRefGoogle Scholar
  22. 22.
    P. Kubelka and F. Munk, Z. Technol. Phys., 12, 593 (1931).Google Scholar
  23. 23.
    Electronic resource, Access mode: http://nanospectr.sfedu.ru.Google Scholar
  24. 24.
    I. S. Rodina, A. N. Kravtsova, A. V. Soldatov, et al., Opt. Spectrosc., 115, No. 6, 858 (2013).CrossRefGoogle Scholar
  25. 25.
    A. N. Kravtsova, A. A. Guda, A. V. Soldatov, et al., Opt. Spectrosc., 119, No. 6, 982 (2015).CrossRefGoogle Scholar
  26. 26.
    A. N. Kravtsova, A. A. Guda, J. Goettlicher, et al., J. Phys. Conf. Ser., 712, 012096 (2016).CrossRefGoogle Scholar
  27. 27.
    F. A. La Porta, J. Andres, M. S. Li, et al., Phys. Chem. Chem. Phys., 16, No. 37, 20127 (2014).CrossRefGoogle Scholar
  28. 28.
    G. Aminoff, Z. Kristallogr. Cryst. Mater., 58, No. 1, 203 (1923).Google Scholar
  29. 29.
    A. L. Patterson, Phys. Rev., 56, No. 10, 978 (1939).CrossRefGoogle Scholar
  30. 30.
    G. Bunker, Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy, Cambridge University Press, UK, Cambridge (2011).Google Scholar
  31. 31.
    M. A. Bryleva, A. N. Kravtsova, I. N. Shcherbakov, et al., J. Struct. Chem., 53, No. 2, 295 (2012).CrossRefGoogle Scholar
  32. 32.
    M. C. Feiters, G. A. Metselaar, B. B. Wentzel, et al., Ind. Eng. Res., 44, 8631 (2005).CrossRefGoogle Scholar
  33. 33.
    A. V. Soldatov, G. Smolentsev, A. Kravtsova, et al., Radiat. Phys. Chem., 75, 1866 (2006).CrossRefGoogle Scholar
  34. 34.
    A. N. Kravtsova, S. A. Suchkova, M. B. Fain, and A. V. Soldatov, J. Struct. Chem., 57, No. 3, 491 (2016).CrossRefGoogle Scholar
  35. 35.
    A. N. Kravtsova, K. A. Lomachenko, S. A. Suchkova, et al., Bull. Russ. Acad. Sci.: Phys., 79, No. 11, 1413 (2015).CrossRefGoogle Scholar
  36. 36.
    A. N. Kravtsova, A. V. Soldatov, S. A. Suchkova, et al., J. Struct. Chem., 56, No. 3, 517 (2015).CrossRefGoogle Scholar
  37. 37.
    Yu. Yu. Lurie, Handbook of Analytical Chemistry [in Russian], Khimiya, Moscow (1979).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. N. Kravtsova
    • 1
  • A. P. Budnik
    • 1
  • A. A. Tsaturyan
    • 2
  • I. A. Pankin
    • 1
    • 3
  • A. L. Bugaev
    • 1
    • 3
  • A. V. Soldatov
    • 1
  1. 1.International Research Center “Smart Materials”Southern Federal UniversityRostov-on-DonRussia
  2. 2.Research Institute of Physical and Organic ChemistrySouthern Federal UniversityRostov-on-DonRussia
  3. 3.Department of ChemistryUniversity of TurinTurinItaly

Personalised recommendations