Journal of Structural Chemistry

, Volume 58, Issue 7, pp 1391–1396 | Cite as

Magnetic structural properties of maghemite nanoparticles obtained with the use of different stabilizers

  • T. A. Lastovina
  • A. P. Budnik
  • V. A. Polyakov
  • A. V. Soldatov
Article
  • 37 Downloads

Abstract

By co-deposition maghemite particles doped with Sm3+ are obtained with the average particle size within 9.9-10.9 nm. Samarium is shown to be present mainly in the near-surface layer of nanoparticles. It is found that the functionalization of the maghemite nanoparticle surface by organic molecules does not deteriorate their magnetic properties.

Keywords

magnetic particles maghemite surfactants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Schmid, Nanoparticles: From Theory to Application, Wiley Interscience, New York (2004).Google Scholar
  2. 2.
    Z. Tang and P. Sheng, Nano Science and Technology: Novel Structures and Phenomena, Taylor and Francis, New York (2003).Google Scholar
  3. 3.
    G. Srajer, L. H. Lewis, S. P. Bader, et al., J. Magn. Magn. Mater., 307, 1 (2006).CrossRefGoogle Scholar
  4. 4.
    T. A. Lastovina, A. L. Bugaev, S. P. Kubrin, et al., J. Struct. Chem., 57, No. 7, 1444–1449 (2016).CrossRefGoogle Scholar
  5. 5.
    O. E. Polozhentsev, S. P. Kubrin, V. V. Butova, et al., J. Struct. Chem., 57, No. 7, 1459–1468 (2016).CrossRefGoogle Scholar
  6. 6.
    M. Chen and D. E. Nikles, J. Appl. Phys., 91, 8477 (2002).CrossRefGoogle Scholar
  7. 7.
    V. Nandwana, K. E. Elkins, N. Poudyal, et al., J. Phys. Chem. C, 111, 4185 (2007).CrossRefGoogle Scholar
  8. 8.
    J. Park, E. Kang, S. U. Son, et al., Adv. Mater., 17, 429 (2005).CrossRefGoogle Scholar
  9. 9.
    A. Cabot, V. F. Puntes, E. Shevchenko, et al., J. Am. Chem. Soc., 129, 10358 (2007).CrossRefGoogle Scholar
  10. 10.
    V. F. Puntes, K. M. Krishnan, and A. P. Alivisatos, Science, 291, 2115 (2001).CrossRefGoogle Scholar
  11. 11.
    V. F. Puntes, D. Zanchet, C. K. Endormez, et al., J. Am. Chem. Soc., 124, 12874 (2002).CrossRefGoogle Scholar
  12. 12.
    S. Sun and C. B. Murray, J. Appl. Phys., 85, 4325 (1999).CrossRefGoogle Scholar
  13. 13.
    S. P. Gubin, G. Yu. Yurkov, and N. A. Kataeva, Neorg. Mater., 41, No. 10, 1159 (2005).CrossRefGoogle Scholar
  14. 14.
    S. P. Gubin, G. Yu. Yurkov, and I. D. Kosobudsky, Int. J. Mater. Prod. Tech., 23, 2 (2005).CrossRefGoogle Scholar
  15. 15.
    L. Nicolais and G. Carotenuto, Metal-Polymer Nanocomposites., Wiley Interscience, New York (2005).Google Scholar
  16. 16.
    G. B. Sergeev and M. A. Petrukhina, Prog. Solid State Chem., 24, 183 (1996).CrossRefGoogle Scholar
  17. 17.
    X. Liu, M. D. Kaminski, Y. Guan, et al., J. Magn. Magn. Mater., 306, 248 (2006).CrossRefGoogle Scholar
  18. 18.
    K. Chen, A. F. Bakuzis, and W. Luo, Appl. Surf. Sci., 252, 6379 (2006).CrossRefGoogle Scholar
  19. 19.
    J. Hormes, H. Modrow, H. Bonnemann, and C. S. S. R. Kumar, J. Appl. Phys., 97, 10R102 (2005).CrossRefGoogle Scholar
  20. 20.
    M. V. Kovalenko, M. I. Bodnarchuk, R. T. Lechner, et al., J. Am. Chem. Soc., 129, 6352 (2007).CrossRefGoogle Scholar
  21. 21.
    N. Shukla, E. B. Svedberg, J. Ell, et al., Mater. Lett., 60, 1950 (2006).CrossRefGoogle Scholar
  22. 22.
    V. Perez-Dieste, O. M. Castellini, J. N. Crain, et al., Appl. Phys. Lett., 83, 5053 (2003).CrossRefGoogle Scholar
  23. 23.
    N. Shukla, C. Liu, P. M. Jones, and D. Weller, J. Magn. Magn. Mater., 266, 178 (2003).CrossRefGoogle Scholar
  24. 24.
    V. Rao, A. L. Shashimohan, and A. B. Biswas, J. Mater. Sci., 9, No. 3, 430 (1974).CrossRefGoogle Scholar
  25. 25.
    W. Kim, C. Y. Suh, S. W. Cho, et al., Talanta, 94, 348 (2012).CrossRefGoogle Scholar
  26. 26.
    D.-J. Kim, Y.-K. Lyu, H. N. Choi, et al., Chem. Commun., 23, 2966 (2005).CrossRefGoogle Scholar
  27. 27.
    L. Zhang, B. Liu, and S. Dong, J. Phys. Chem. B, 111, 10448 (2007).CrossRefGoogle Scholar
  28. 28.
    Z. A. Narei, B. Shafiee, and A. R. Khosropour, RSC Adv., 5, 20132 (2015).CrossRefGoogle Scholar
  29. 29.
    M. del Valle Martínez de Yuso, A. Arango-Diaz, S. Bijani, et al., Appl. Sci., 4, No. 2, 195 (2014).CrossRefGoogle Scholar
  30. 30.
    G. Gupta, S. Sharma, and P. M. Mendes, RSC Adv., 6, 82635 (2016).CrossRefGoogle Scholar
  31. 31.
    T. A. Lastovina, S. A. Efimova, E. A. Kudryavtsev, et al., BioNanoScience, doi: 10.1007/s12668-016-0385-8 (2016).Google Scholar
  32. 32.
    O. Rahman, S. C. Mohapatra, and S. Ahmad, Mater. Chem. Phys., 132, 196 (2012).CrossRefGoogle Scholar
  33. 33.
    H.-C. Roth, S. Schwaminger, and P. F. Garcia, J. Nanopart. Res., 18, 99 (2016).CrossRefGoogle Scholar
  34. 34.
    S. Y. Zhao, D. K. Lee, C. W. Kim, et al., Bull. Korean Chem. Soc., 27, No. 2, 237 (2006).CrossRefGoogle Scholar
  35. 35.
    H. B. Rogers, T. Anani, Y. S. Choi, et al., Int. J. Mol. Sci., 16, 20001 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • T. A. Lastovina
    • 1
  • A. P. Budnik
    • 1
  • V. A. Polyakov
    • 1
  • A. V. Soldatov
    • 1
  1. 1.International Research Center “Smart Materials”Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations