Journal of Structural Chemistry

, Volume 58, Issue 5, pp 893–900 | Cite as

Electron transport properties of thermoelectrics based on layered substituted transition metal dichalcogenides

  • A. I. RomanenkoEmail author
  • G. E. Yakovleva
  • V. E. Fedorov
  • A. Yu. Ledneva
  • V. A. Kuznetsov
  • A. V. Sotnikov
  • A. R. Tsygankova
  • B. M. Kuchumov


Temperature dependences of the electrical conductivity are studied in the range 4.2’300 K and Seebeck coefficient at room temperature of bulk samples of tungsten dichalcogenide polycrystals with niobium substitutions for tungsten and selenium substitutions for sulfur – W1–x Nb x (S1–y Se y )2. The two-dimensionalization of electron transport properties is detected at niobium concentrations x ≥ 0.1 in W1–x Nb x S2 and x ≥ 0.05 in W1–x Nb x Se2. In samples with additional partial selenium substitution for sulfur the electron transport remains three-dimensional. At room temperature the Seebeck coefficient (at equal electrical conductivities) is several times higher in the samples with quasi-two-dimensional transport than in the samples with three-dimensional transport. The calculation of the power factor at room temperature shows its nine times increase.


layered transition metal chalcogenides electrical conductivity Seebeck coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. L. Kalikhman and Ya. S. Umanskii, Usp. Fiz. Nauk, 108, 503–528 (1972).CrossRefGoogle Scholar
  2. 2.
    V. L. Kalikhman and L. L. Pravoverova, Izv. AN USSR (Neorg. mater.), 7, 2162–2180 (1971).Google Scholar
  3. 3.
    A. N. Gandi and U. Schwingenschlögl, Chem. Mater., 26, 6628–6637 (2014).CrossRefGoogle Scholar
  4. 4.
    W. Huang, H. Da and G. Liang, J. Appl. Phys., 113, 104304-1-104304-7 (2013).Google Scholar
  5. 5.
    V. E. Fedorov, N. G. Naumov, A. N. Lavrov, M. S. Tarasenko, S. B. Artemkina, A. I. Romanenko, and M. V. Medvedev, in: The 36th Internat. ICN Convention–MIPRO, Opatija, Croatia (2013) pp. 11–14.Google Scholar
  6. 6.
    A. V. Shevel’kov, Usp. Khim., 77, 3–21 (2008).Google Scholar
  7. 7.
    A. V. Dmitriev and I. P. Zvyagin, Usp. Fiz. Nauk, 180, 821–838 (2010).CrossRefGoogle Scholar
  8. 8.
    V. E. Fedorov, in: Proceeding of IEEE Nanotechnology Materials and Devices Conference, Jeju (ed.), Korea (2011), pp. 65–68.Google Scholar
  9. 9.
    M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin, and T. Koga, Phys. Solid State, 41, No. 5, 679–682 (1999).CrossRefGoogle Scholar
  10. 10.
    J. P. Heremans, Acta Phys. Pol., A108, 609–634 (2005).CrossRefGoogle Scholar
  11. 11.
    L. D. Hicks and M. S. Dresselhaus, Phys. Rev., B47, No. 19, 12727–12731 (1993).CrossRefGoogle Scholar
  12. 12.
    L. D. Hicks and M. S. Dresselhaus, Phys. Rev., B47, No. 24, 16631–16634 (1993).CrossRefGoogle Scholar
  13. 13.
    D. Parker, X. Chen, and D. J. Singh, Phys. Rev. Lett., 110, No. 24, 146601-1-146601-5 (2013).Google Scholar
  14. 14.
    G. Huai-Hong, Y. Teng, T. Peng, and Z. Zhi-Dong, Chin. Phys., B23, 017201-1-017201-7 (2014).Google Scholar
  15. 15.
    M. K. Agarwal, M. N. Vashi, and A. R. Jani, J. Cryst. Growth, 71, 415–420 (1985).CrossRefGoogle Scholar
  16. 16.
    G. E. Yakovleva, A. I. Romanenko, A. S. Berdinsky, A. Y. Ledneva, V. A. Kuznetsov, M. K. Han, S. J. Kim, and V. E. Fedorov, in: The 39th Internat. ICN Convention — MIPRO 2016, Opatija, Croatia (2016) pp. 11–15.Google Scholar
  17. 17.
    Q. Zhu, E. M. Hopper, B. J. Ingram, and T. O. Mason, J. Am. Ceram. Soc., 94, 187–193 (2011).CrossRefGoogle Scholar
  18. 18.
    A. I. Romanenko, V. E. Fedorov, S. B. Artemkina, O. B. Anikeeva, and P. A. Poltarak, FTT, 57, 1802–1806 (2015).Google Scholar
  19. 19.
    A. I. Romanenko, O. B. Anikeeva, T. I. Buryakov, E. N. Tkachev, K. R. Zhdanov, V. L. Kuznetsov, I. N. Mazov, A. N. Usoltseva, and A. V. Ischenko, Diamond Relat. Mater., 19, 964–967 (2010).CrossRefGoogle Scholar
  20. 20.
    I. N. Mazov, V. L. Kuznetsov, S. I. Moseenkov, A. V. Ishchenko, N. A. Rudina, A. I. Romanenko, T. I. Buryakov, O. B. Anikeeva, J. Macutkevic, D. Seliuta, G. Valusis, and J. Banys, Nanosci. Nanotechnol. Lett., 3, 18–23 (2011).CrossRefGoogle Scholar
  21. 21.
    J. Macutkevich, R. Adomavicius, A. Krotkus, J. Banys, V. Kuznetsov, S. Moseenkov, A. Romanenko, and O. Shenderova, J. Appl. Physiol., 111, 103701-1-103701-6 (2012).Google Scholar
  22. 22.
    N. Mott and E. Davis, Electronic Process in Non-Crystalline Materials, 2nd Ed., V.1, Clarendon Press, Oxford (1979).Google Scholar
  23. 23.
    L. P. Gor’kov, A. I. Larkin, and D. E. Khemel’nitskii, Pis’ma v ZhETF, 30, 248 (1979).Google Scholar
  24. 24.
    B. L. Altshuler and A. G. Aronov, in: Electron-Electron Interactions in Disordered Systems, Modern Problems in Condensed Matter Science Vol. 10., A. L. Efros and M. Pollak (eds.),North-Holland, Amsterdam (1985).Google Scholar
  25. 25.
    W. J. Schutte, J. L. De Boer, and F. Jellinek, J. Solid State Chem., 70, 207–209 (1987).CrossRefGoogle Scholar
  26. 26.
    F. Jellinek, G. Brauer, and H. Muller, Nature, 185, 376/377 (1960).CrossRefGoogle Scholar
  27. 27.
    H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, Adv. Funct. Mater., 22, 1385–1390 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. I. Romanenko
    • 1
    • 2
    Email author
  • G. E. Yakovleva
    • 1
  • V. E. Fedorov
    • 1
    • 3
  • A. Yu. Ledneva
    • 1
  • V. A. Kuznetsov
    • 1
  • A. V. Sotnikov
    • 1
  • A. R. Tsygankova
    • 1
    • 3
  • B. M. Kuchumov
    • 1
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Tomsk National Research State UniversityTomskRussia
  3. 3.Novosibirsk National Research State UniversityNovosibirskRussia

Personalised recommendations