Advertisement

Journal of Structural Chemistry

, Volume 58, Issue 3, pp 447–451 | Cite as

A quantum chemical study of the Fe@C 60 endocomplex

  • S. G. Semenov
  • M. E. Bedrina
  • M. V. Makarova
  • A. V. Titov
Article

Abstract

At the DFT (U)PBE0/cc-pVDZ level the structural parameters of a hypothetical Fe@C 60 endocomplex are determined. The (A 1//C 3v )–Fe@C 60 state characterized by the electron spin square of 3.07 au, the free valence of 4.15, the dipole moment of 1.15 D, and the 172 pm Fe nuclear shift relative to the center of inertia of С60 corresponds to the energy minimum. The Stone–Wales rearrangement in the quasi-triplet state increases the endocomplex energy by 1.56 eV and by 0.79 eV in the quasi-quintet state.

Keywords

Fe@C60 endocomplex ground and excited states structure Stone–Wales rearrangement DFT PBE0 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Pradeep, G. U. Kulkarni, K. R. Kannan, T. N. Guru Row, and C. N. R. Rao, J. Am. Chem. Soc., 114, 2272 (1992).CrossRefGoogle Scholar
  2. 2.
    V. K. Koltover, Vestn. RFFI, 59, No. 3, 54 (2008).Google Scholar
  3. 3.
    A. A. Popov, S. Yang, and L. Dunsch, Chem. Rev., 113, 5989 (2013).CrossRefGoogle Scholar
  4. 4.
    T. Asaji, T. Ohba, T. Uchida, H. Minezaki, S. Ishihara, R. Racz, M. Muramatsu, S. Biri, A. Kitagawa, Y. Kato, and Y. Yoshida, Rev. Sci. Instrum., 85, 02A936-1 (2014).Google Scholar
  5. 5.
    K. Sueki, K. Kikuchi, K. Akiyama, T. Sawa, M. Katada, S. Ambe, F. Ambe, and H. Nakahara, Chem. Phys. Lett., 300, 140 (1999).CrossRefGoogle Scholar
  6. 6.
    J. P. Perdew and Y. Wang, Phys. Rev. B, 45, 13244 (1992).CrossRefGoogle Scholar
  7. 7.
    A. D. Becke, Phys. Rev. A, 38, 3098 (1988).CrossRefGoogle Scholar
  8. 8.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).CrossRefGoogle Scholar
  9. 9.
    C.-M. Tang, K.-M. Deng, J.-L. Yang, and X. Wang, Chin. J. Chem., 24, 1133 (2006).CrossRefGoogle Scholar
  10. 10.
    R. E. Estrada-Salas and A. A. Valladares, J. Mol. Struct.: THEOCHEM, 869, 1 (2008).CrossRefGoogle Scholar
  11. 11.
    M. B. Javan, N. Tajabor, M. Behdani, and M. R. Rokn-Abadi, Physica B, 405, 4937 (2010).CrossRefGoogle Scholar
  12. 12.
    N. Troullier and J. L. Martins, Phys. Rev. B, 43, 1993 (1991).CrossRefGoogle Scholar
  13. 13.
    R. McWeeny, J. Chem. Phys., 19, 1614 (1951).CrossRefGoogle Scholar
  14. 14.
    R. S. Mulliken, J. Chem. Phys., 23, 1833 (1955).CrossRefGoogle Scholar
  15. 15.
    A. J. Stone and D. J. Wales, Chem. Phys. Lett., 128, 501 (1986).CrossRefGoogle Scholar
  16. 16.
    H. F. Bettinger, B. I. Yakobson, and G. E. Scuseria, J. Am. Chem. Soc., 125, 5572 (2003).CrossRefGoogle Scholar
  17. 17.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Rev. C.01, Gaussian, Inc., Wallingford CT (2010).Google Scholar
  18. 18.
    S. G. Semenov and M. V. Makarova, Russ. J. Gen. Chem., 85, 889 (2015).CrossRefGoogle Scholar
  19. 19.
    C. Adamo and V. Barone, J. Chem. Phys., 110, 6158 (1999).CrossRefGoogle Scholar
  20. 20.
    A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys., 83, 735 (1985).CrossRefGoogle Scholar
  21. 21.
    W. I. F. David, R. M. Ibberson, J. C. Matthewman, K. Prassides, T. J. S. Dennis, J. P. Hare, H. W. Kroto, R. Taylor, and D. R. M. Walton, Nature, 353, 147 (1991).CrossRefGoogle Scholar
  22. 22.
    K. Hedberg, L. Hedberg, D. S. Bethune, C. A. Brown, H. C. Dorn, R. D. Johnson, and de M. Vries, Science, 254, 410 (1991).CrossRefGoogle Scholar
  23. 23.
    K. Takatsuka, T. Fueno, and K. Yamaguchi, Theor. Chim. Acta, 48, 175 (1978).CrossRefGoogle Scholar
  24. 24.
    S. G. Semenov, M. E. Bedrina, V. A. Klemeshev, and M. V. Makarova, Opt. Spectrosc., 117, 516 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. G. Semenov
    • 1
  • M. E. Bedrina
    • 2
  • M. V. Makarova
    • 2
  • A. V. Titov
    • 1
    • 2
  1. 1.National Research Center “Kurchatov Institute”Konstantinov Petersburg Nuclear Physics InstituteSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations