Advertisement

Journal of Structural Chemistry

, Volume 58, Issue 3, pp 441–446 | Cite as

A quantum chemical study of gallium(III) (μ-oxo)bis[phthalocyaninate] and gallium(III) (μ-oxo)bis[perfluorophthalocyaninate] molecules

  • S. G. Semenov
  • M. E. Bedrina
Article
  • 50 Downloads

Abstract

By the DFT (U)PBE0 method the structural parameters of molecules, cations, dications, and anions of gallium(III) (μ-oxo)bis[phthalocyaninate], gallium(III) (μ-oxo)bis[perfluorophthalocyaninate], and heteroleptic bis-phthalocyaninate FPcGaOGaPc are determined. The ∠GaOGa bond angle and the Ga⋯Ga internuclear distance depend non-monotonically on the charge. The ionization potential of the (PcGa)2O molecule of 5.71 eV, the second electron detachment energy of 7.94 eV, and the electron affinity of 2.14 eV increase to 6.14 eV, 8.37 eV, and 2.72 eV after the perfluorination of one Pc moiety and to 6.60 eV, 8.70 eV, and 3.13 eV respectively after complete fluorination.

Keywords

gallium bis-phthalocyaninates fluorophthalocyaninates structure ionization potential dication electron affinity iodine sponge DFT PBE0 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. A. Askarov, B. D. Berezin, E. V. Bystritskaya, O. A. Golubchikov, O. I. Koifman, V. A. Kuz`mitskii, V. G. Mairanovskii, G. V. Ponomarev, M. A. Rish, B. R. Smirnov, K. N. Solov`ev, M. P. Tsvirko, and E. I. Yartsev, Porphyrines: Spectrоscopy, Electrochemistry, Application [in Russian], Nauka, Moscow (1987).Google Scholar
  2. 2.
    R. S. Nohr, P. M. Kuznesof, K. J. Wynne, M. E. Kenney, and P. G. Siebenman, J. Am. Chem. Soc., 103, No. 15, 4371–4377 (1981).CrossRefGoogle Scholar
  3. 3.
    R. S. Nohr and K. J. Wynne, J. Chem. Soc., Chem. Commun., No. 23, 1210/1211 (1981).Google Scholar
  4. 4.
    K. J. Wynne, Inorg. Chem., 23, No. 26, 4658–4663 (1984).CrossRefGoogle Scholar
  5. 5.
    K. J. Wynne, Inorg. Chem., 24, No. 9, 1339–1343 (1985).CrossRefGoogle Scholar
  6. 6.
    M. Futamata and Y. Takaki, Synth. Met., 39, No. 3, 343–353 (1991).CrossRefGoogle Scholar
  7. 7.
    K. Yamasaki, O. Okada, K. Inami, K. Oka, M. Kotani, and H. Yamada, J. Phys. Chem. B, 101, No. 1, 13–19 (1997).CrossRefGoogle Scholar
  8. 8.
    Y. Chen, L. R. Subramanian, M. Fujitsuka, O. Ito, S. O′Flaherty, W. J. Blau, T. Schneider, D. Dini, and M. Hanack, Chem. Eur. J., 8, No. 18, 4248–4254 (2002).CrossRefGoogle Scholar
  9. 9.
    Y. Chen, M. Hanack, Y. Araki, and O. Ito, Chem. Soc. Rev., 34, No. 6, 517–529 (2005).CrossRefGoogle Scholar
  10. 10.
    Y. Liu, S. M. OFlahert, Y. Chen, Y. Araki, J. Bai, J. Doile, W. J. Blau, and O. Ito, Dyes Pigm., 75, No. 1, 88–92 (2007).CrossRefGoogle Scholar
  11. 11.
    H. Gu, S. Li, J. Wang, W. J. Blau, and Y. Chen, Mater. Chem. Phys., 137, No. 1, 188–193 (2012).CrossRefGoogle Scholar
  12. 12.
    M. J. F. Calvete, Int. Rev. Phys. Chem., 31, No. 3, 319–366 (2012).CrossRefGoogle Scholar
  13. 13.
    T. Strenalyuk, S. Samdal, and H. V. Volden, J. Phys. Chem. A, 112, No. 1, 9075–9082 (2008).CrossRefGoogle Scholar
  14. 14.
    S. G. Semenov and M. E. Bedrina, J. Struct. Chem., 52, No. 5, 996–999 (2011).CrossRefGoogle Scholar
  15. 15.
    T. V. Basova, V. G. Kiselev, F. Latteyer, H. Peisert, and T. Chasse, Appl. Surface Sci., 322, 242–248 (2014).CrossRefGoogle Scholar
  16. 16.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, No. 18, 3865–3868 (1996).CrossRefGoogle Scholar
  17. 17.
    C. Adamo and V. Barone, J. Chem. Phys., 110, No. 13, 6158–6170 (1999).CrossRefGoogle Scholar
  18. 18.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian-09, Rev. C.01, Gaussian, Inc., Wallingford CT (2010).Google Scholar
  19. 19.
    E. L. Eliel, S. H. Wilen, and M. P. Doyle, Basic Organic Stereochemistry, Wiley-Interscience, New York (2001).Google Scholar
  20. 20.
    M. K. Gilson and K. K. Irikura, J. Phys. Chem. B, 114, No. 49, 16304–16317 (2010).CrossRefGoogle Scholar
  21. 21.
    S. G. Semenov, M. E. Bedrina, V. A. Klemeshev, and M. V. Makarova, Opt. Spektrosk., 117, No. 4, 13–22 (2014).CrossRefGoogle Scholar
  22. 22.
    A. Chakrabarti, I. D. L. Albert, S. Ramasesha, S. Lalitha, and J. Chandrasekhar, Proc. Indian Acad. Sci. (Chem. Sci), 105, No. 1, 53–62 (1993).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.National Research Center “Kurchatov Institute”Konstantinov Institute of Nuclear PhysicsSt. PetersburgRussia

Personalised recommendations