Journal of Structural Chemistry

, Volume 58, Issue 1, pp 211–215 | Cite as

Crystal structure and theoretical calculations of 1-(4-trifluoromethyl-2,3,5,6-tetrafluorophenyl)-3-benzylimidazolium bromide

Brief Communications
  • 41 Downloads

Abstract

The salt 1-(4-trifluoromethyl-2,3,5,6-tetrafluorophenyl)-3-benzylimidazolium bromide [(CF3C6F4)NC3H3N(CH2Ph)]+·Br is crystallized from methanol in the space group P-421 c of the tetragonal crystal system with unit cell parameters a = b = 21.6531(3) Å, c = 8.1968(2) Å, V = 3843.13(13) Å3, Z = 8, d calc = 1.5732 g/cm3. The structure possesses square channels with a width of ca. 5.2 Å, which accounts for 14% of the volume, and contains one methanol molecule per ion pair. The cation interacts with three bromide ions through an anion–π interaction and two C–H⋯Br interactions. These interactions are investigated by DFT calculations.

Keywords

imidazolium anion–π interaction X-ray structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Importance of Pi-interactions in Crystal Engineering: Frontiers in Crystal Engineering, E. R. Tiekink and J. Zukerman-Schpector (eds.), Chichester: John Wiley & Sons Ltd, UK (2012).Google Scholar
  2. 2.
    M. Egli and S. Sarkhel, Acc. Chem. Res., 40, 197–205 (2007).CrossRefGoogle Scholar
  3. 3.
    S. K. Singh and A. Das, Phys. Chem. Chem. Phys., 17, 9596–9612 (2015).CrossRefGoogle Scholar
  4. 4.
    G. R. Desiraju, Angew. Chem., Int. Ed., 50, 52–59 (2011).CrossRefGoogle Scholar
  5. 5.
    E. Arunan, G. R. Desiraju, R. A. Klein, et al., Pure Appl. Chem., 83, 1637–1641 (2011).Google Scholar
  6. 6.
    J. M. Serrano-Becerra, S. Hernández-Ortega, D. Morales-Morales, and J. Valdés-Martínez, CrystEngComm., 11, 226–228 (2009).CrossRefGoogle Scholar
  7. 7.
    G. C. Saunders, CrystEngComm., 13, 1801–1803 (2011).CrossRefGoogle Scholar
  8. 8.
    V. L. Arcus, D. R. Bernstein, C. W. Crombie, and G. C. Saunders, CrystEngComm., 15, 9841–9843 (2013).CrossRefGoogle Scholar
  9. 9.
    O. V. Dolomanov, L. J. Bourhis, Gildea, et al., J. Appl. Crystallogr., 42, 339–341 (2009).CrossRefGoogle Scholar
  10. 10.
    L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, et al., Acta Crystallogr., A71, 59–75 (2015).Google Scholar
  11. 11.
    H. D. Flack, Acta Crystallogr., A39, 876–881 (1983).CrossRefGoogle Scholar
  12. 12.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision A.2., Gaussian, Inc., Wallingford CT (2009).Google Scholar
  13. 13.
    J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 10, 6615–6620 (2008).CrossRefGoogle Scholar
  14. 14.
    H. I. Althagbi, A. J. Edwards, B. K. Nicholson, et al., Cryst. Growth Des., 16, 174–188 (2016).CrossRefGoogle Scholar
  15. 15.
    A. Bondi, J. Phys. Chem., 68, 441–451 (1964).CrossRefGoogle Scholar
  16. 16.
    C. Estarellas, A. Bauzá, A. Frontera, et al., Phys. Chem. Chem. Phys., 13, 5696–5702 (2011).CrossRefGoogle Scholar
  17. 17.
    D. Quiñonero, C. Garau, C. Rotger, et al., Angew. Chem., Int. Ed., 41, 3389–3392 (2002).CrossRefGoogle Scholar
  18. 18.
    B. L. Schottel, H. T. Chifotides, and K. R. Dunbar, Chem. Soc. Rev., 37, 68–83 (2008).CrossRefGoogle Scholar
  19. 19.
    M. Giese, M. Albrecht, A. Valkonen, and K. Rissanen, Chem. Sci., 6, 354–359 (2015).CrossRefGoogle Scholar
  20. 20.
    T. V. Rybalova and I. Yu. Bagryanskaya, J. Struct. Chem., 50, 741–753 (2009).CrossRefGoogle Scholar
  21. 21.
    S. Tsuzuki, H. Tokuda, and M. Mikami, Phys. Chem. Chem. Phys., 9, 4780–4784 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.School of ScienceUniversity of WaikatoHamiltonNew Zealand

Personalised recommendations