Advertisement

Journal of Structural Chemistry

, Volume 58, Issue 1, pp 126–134 | Cite as

Structural and morphological properties of Ce1–x M x O y (M = Gd, La, Mg) supports for the catalysts of autothermal ethanol conversion

  • M. A. Kerzhentsev
  • E. V. MatusEmail author
  • I. Z. Ismagilov
  • V. A. Ushakov
  • O. A. Stonkus
  • T. V. Larina
  • G. S. Kozlova
  • P. Bharali
  • Z. R. Ismagilov
Article

Abstract

A complex of physicochemical methods (powder XRD analysis, transmission and scanning electron microscopy, electron spectroscopy of diffuse reflectance, low-temperature nitrogen adsorption) is used for the comparative study of structural and morphological properties of oxide supports Ce1–x M x O y (M = Gd, La, Mg; x = 0-0.5; 1.5 ≤ y ≤ 2.0) for catalysts for the autothermal reforming of bioethanol to a hydrogen-bearing gas. It is shown that Ce1–x M x O y samples synthesized by the method of ester polymer precursors are mesoporous materials being the homogenous substitutional solid solutions with the fluorite-type cubic structure. The structural and textural properties of the Ce1–x M x O y materials are regulated by varying the type of the dopant cation (M = Gd, La, Mg), the molar ratio M/Ce (0, 0.1, 0.25, 1), and heat treatment conditions (temperature 300-800 °C; duration 4-24 h). The relationship between the synthesis parameters and the characteristics of the Ce1–x M x O y materials is found.

Keywords

cerium dioxide dopants powder XRD analysis electron microscopy electron spectroscopy of diffuse reflectance nanomaterials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. R. Ismagilov, V. V. Kuznetsov, L. B. Okhlopkova, L. T. Tsikoza, and S. A. Yashnik, Oxides of Titanium, Cerium, Zirconium, Yttrium, Aluminium: Properties, Application, and Synthesis Methods [in Russian], Izd. SO RAN, Novosibirsk (2010).Google Scholar
  2. 2.
    V. K. Ivanov, O. S. Polezhaeva, and Yu. D. Tret′yakov, Russ. J. Gen. Chem., 80, No. 3, 604 (2010).CrossRefGoogle Scholar
  3. 3.
    T. G. Kuznetsova and V. A. Sadykov, Kinet. Catal., 49, No. 6, 886 (2008).CrossRefGoogle Scholar
  4. 4.
    G. Nahar and V. Dupont, Renewable Sustainable Energy. Rev., 32, 777 (2014).CrossRefGoogle Scholar
  5. 5.
    R. Perez-Hernandez, A. Gutierrez-Martınez, and J. Palacios, IJHE, 36, 6601–6608 (2011).Google Scholar
  6. 6.
    I. Z. Ismagilov, E. V. Matus, V. V. Kuznetsov, et al., Catal. Today, 210, 10 (2013).CrossRefGoogle Scholar
  7. 7.
    P. Maki-Arvela and D. Yu. Murzin, Appl. Cat. A, 451, 251 (2013).CrossRefGoogle Scholar
  8. 8.
    I. Z. Ismagilov, E. V. Matus, V. V. Kuznetsov, et al., IJHE, 39, 20969 (2014).Google Scholar
  9. 9.
    H. Kaneko, S. Taku, and Y. Tamaura, Sol. Energy, 85, 2321 (2011).CrossRefGoogle Scholar
  10. 10.
    T.-D. Nguyen-Phan, M. B. Song, E. J. Kim, et al., Microporous Mesoporous Mater., 119, 290 (2009).CrossRefGoogle Scholar
  11. 11.
    B. Zhang, D. Li, and X. Wang, Catal. Today, 158, 348 (2010).CrossRefGoogle Scholar
  12. 12.
    F. Liu, L. Zhao, H. Wang, et al., IJHE, 39, 10454 (2014).Google Scholar
  13. 13.
    R. O. Fuentes and R. T. Baker, J. Power Sources, 186, 268 (2009).CrossRefGoogle Scholar
  14. 14.
    T. Zhang, D. Tang, Y. Shao, et al., J. Mater. Eng. Perform., 19, 1220 (2010).CrossRefGoogle Scholar
  15. 15.
    F. Zhang, Q. Jin, and S.-W. Chan, J. Appl. Phys., 95, 4319 (2001).CrossRefGoogle Scholar
  16. 16.
    L. Wu, H. J. Wiesmann, A. R. Moodenbaugh, et al., Phys. Rev. B, 69, 125415 (2014).CrossRefGoogle Scholar
  17. 17.
    O. O. Stoianov, V. K. Ivanov, A. B. Shcherbako, et al., Russ. J. Org. Chem., 59, 15 (2014).Google Scholar
  18. 18.
    L. Katta, P. Sudarsanam, G. Thrimurthulu, et al., Appl. Catal. B, 101, 101 (2010).CrossRefGoogle Scholar
  19. 19.
    Q. Yu, X. Wu, C. Tang, et al., J. Colloid Interface Sci., 354, 341 (2011).CrossRefGoogle Scholar
  20. 20.
    M. Chen, H. Zheng, C. Shi, et al., J. Mol. Catal. A, 237, 132 (2005).CrossRefGoogle Scholar
  21. 21.
    W. Y. Hernandez, O. H. Laguna, M. A. Centeno, et al., J. Solid State Chem., 184, 3014 (2011).CrossRefGoogle Scholar
  22. 22.
    Z.-P. Li, T. Mori, J. Zou, et al., Mater. Res. Bull., 48, 807 (2013).CrossRefGoogle Scholar
  23. 23.
    D. H. Prasad, S. Y. Park, H.-I. Ji, et al., J. Phys. Chem. C, 116, 3467 (2012).CrossRefGoogle Scholar
  24. 24.
    X. Yao, C. Tang, Z. Ji, et al., Catal. Sci. Technol., 3, 688 (2013).CrossRefGoogle Scholar
  25. 25.
    A. Bensalem, J. C. Muller, and F. Bozon-Verduraz, J. Chem. Soc. Faraday Trans., 88, 153 (1992).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. A. Kerzhentsev
    • 1
  • E. V. Matus
    • 1
    Email author
  • I. Z. Ismagilov
    • 1
  • V. A. Ushakov
    • 1
  • O. A. Stonkus
    • 1
    • 2
  • T. V. Larina
    • 1
  • G. S. Kozlova
    • 3
  • P. Bharali
    • 4
  • Z. R. Ismagilov
    • 1
    • 5
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk National Research State UniversityNovosibirskRussia
  3. 3.Shared Research Center, Federal Research Center of Coal and Coal Chemistry, Siberian BranchRussian Academy of SciencesKemerovoRussia
  4. 4.Tezpur UniversityNapaam, Tezpur AssamIndia
  5. 5.Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry, Siberian BranchRussian Academy of SciencesKemerovoRussia

Personalised recommendations