Advertisement

Journal of Structural Chemistry

, Volume 57, Issue 7, pp 1444–1449 | Cite as

Structural studies of magnetic nanoparticles doped with rare-earth elements

  • T. A. Lastovina
  • A. L. Bugaev
  • S. P. Kubrin
  • E. A. Kudryavtsev
  • A. V. Soldatov
Applications of Synchrotron Radiation in Structural Chemistry

Abstract

Magnetic nanoparticles and those doped with rare-earth metal ions having spinel structure were synthesized, possessing the average particles size of 11.3-13.4 nm. According to Mössbauer spectroscopy data it can be concluded that prepared iron oxide nanoparticles are γ-Fe2O3. For materials containing rare-earth elements the decrease of octahedral component surface was observed in comparison to non-doped material, what can be explained by Eu3+, Sm3+ и Gd3+ ions occupying the octahedral position.

Keywords

magnetic particles iron oxides Mössbauer spectroscopy biomedicine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Gu, K. Xu, C. Xu, and B. Xu, Chem. Commun., No. 9, 941–949 (2006).CrossRefGoogle Scholar
  2. 2.
    A. K. Gupta and M. Gupta, Biomaterials, 26, No. 18, 3995–4021 (2005).CrossRefGoogle Scholar
  3. 3.
    Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys., 36, No. 13, R167–R181 (2003).CrossRefGoogle Scholar
  4. 4.
    M. M. Miller, G. A. Prinz, S. F. Cheng, and S. Bounnak, Appl. Phys. Lett., 81, No. 12, 2211–2213 (2002).CrossRefGoogle Scholar
  5. 5.
    S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science, 287, No. 5460, 1989–1992 (2000).CrossRefGoogle Scholar
  6. 6.
    L. Gutierrez, F. J. Lazaro, A. R. Abadia, M. S. Romero, C. Quintana, M. Puerto Morales, C. Patino, and R. Arranz, J. Inorg. Biochem., 100, No. 11, 1790–1799 (2006).CrossRefGoogle Scholar
  7. 7.
    S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, and R. N. Muller, Chem Rev., 108, No. 6, 2064–2110 (2008).CrossRefGoogle Scholar
  8. 8.
    T. Kikumori, T. Kobayashi, M. Sawaki, and T. Imai, Breast Cancer Res. Treat., 113, No. 3, 435–441 (2009).CrossRefGoogle Scholar
  9. 9.
    P. Tartaj, M. D. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, and C. J. Serna, J. Phys. D: Appl. Phys., 36, No. 13, R182–R197 (2003).CrossRefGoogle Scholar
  10. 10.
    M. P. Morales, S. Veintemillas-Verdaguer, M. I. Montero, C. J. Serna, A. Roig, L. Casas, B. Martínez, and F. Sandiumenge, Chem. Mater., 11, No. 11, 3058–3064 (1999).CrossRefGoogle Scholar
  11. 11.
    K. Woo, J. Hong, S. Choi, H. W. Lee, J. P. Ahn, C. S. Kim, and S. W. Lee, Chem. Mater., 16, No. 14, 2814–2818 (2004).CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, N. Kohler, and M. Q. Zhang, Biomaterials, 23, No. 7, 1553–1561 (2002).CrossRefGoogle Scholar
  13. 13.
    B. D. Cullity (ed.), Introduction to Magnetic Materials, Addison-Wesley Pub. Co., Reading, MA (1972).Google Scholar
  14. 14.
    M. E. Fleet, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 37, No. 4, 917–920 (1981).CrossRefGoogle Scholar
  15. 15.
    V. Rao, A. L. Shashimohan, and A. B. Biswas, J. Mater. Sci., 9, No. 3, 430–433 (1974).CrossRefGoogle Scholar
  16. 16.
    K. Haneda and A. H. Morrish, J. Phys. Colloq., 38, No. C1, C1-321-C1-323 (1977).Google Scholar
  17. 17.
    W. Kim, C. Y. Suh, S. W. Cho, K. M. Roh, H. Kwon, K. Song, and I. J. Shon, Talanta, 94, 348–352 (2012).CrossRefGoogle Scholar
  18. 18.
    V. Petkov, P. D. Cozzoli, R. Buonsanti, R. Cingolani, and Y. Ren, J. Am. Chem. Soc., 131, No. 40, 14264–14266 (2009).CrossRefGoogle Scholar
  19. 19.
    A. Espinosa, A. Serrano, A. Llavona, J. J. de la Morena, M. Abuin, A. Figuerola, T. Pellegrino, J. F. Fernandez, M. Garcia-Hernandez, G. R. Castro, and M. A. Garcia, Meas. Sci. Technol., 23, No. 1, 015602 (2012).CrossRefGoogle Scholar
  20. 20.
    M. M. Can, S. Ozcan, A. Ceylan, and T. Firat, Mater. Sci. Eng., B, 172, No. 1, 72–75 (2010).CrossRefGoogle Scholar
  21. 21.
    H. Yan, J. Zhang, C. You, Z. Song, B. Yu, and Y. Shen, Mater. Chem. Phys., 113, No. 1, 46–52 (2009).CrossRefGoogle Scholar
  22. 22.
    Y.-H. Zheng, Y. Cheng, F. Bao, and Y.-S. Wang, Mater. Res. Bull., 41, No. 3, 525–529 (2006).CrossRefGoogle Scholar
  23. 23.
    S. R. Chowdhury, E. K. Yanful, and A. R. Pratt, Environ. Earth Sci., 64, No. 2, 411–423 (2010).CrossRefGoogle Scholar
  24. 24.
    C. S. Kuivila, J. B. Butt, and P. C. Stair, Appl. Surf. Sci., 32, Nos. 1/2, 99–121 (1988).CrossRefGoogle Scholar
  25. 25.
    J. L. Dormann, D. Fiorani, R. Cherkaoui, E. Tronc, F. Lucari, F. D'Orazio, L. Spinu, M. Noguès, H. Kachkachi, and J. P. Jolivet, J. Magn. Magn. Mater., 203, Nos. 1-3, 23–27 (1999).CrossRefGoogle Scholar
  26. 26.
    M. Mikhaylova, D. K. Kim, N. Bobrysheva, M. Osmolowsky, V. Semenov, T. Tsakalakos, and M. Muhammed, Langmuir, 20, No. 6, 2472–2477 (2004).CrossRefGoogle Scholar
  27. 27.
    J. Santoyo Salazar, L. Perez, O. de Abril, L. Truong Phuoc, D. Ihiawakrim, M. Vazquez, J.-M. Greneche, S. Begin-Colin, and G. Pourroy, Chem. Mater., 23, No. 6, 1379–1386 (2011).CrossRefGoogle Scholar
  28. 28.
    E. Tronc, A. Ezzir, R. Cherkaoui, C. Chanéac, M. Noguès, H. Kachkachi, D. Fiorani, A. M. Testa, J. M. Grenèche, and J. P. Jolivet, J. Magn. Magn. Mater., 221, Nos. 1/2, 63–79 (2000).CrossRefGoogle Scholar
  29. 29.
    W. Huan, C. Cheng, Y. Yang, H. Yuan, and Y. Li, J. Nanosci. Nanotechnol., 12, No. 6, 4621–4634 (2012).Google Scholar
  30. 30.
    P. Scherrer, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl., 2, 98–100 (1918).Google Scholar
  31. 31.
    D. Gingasu, I. Mindru, L. A. Patron, J. M. Calderon-Moreno, L. Diamandescu, F. Tuna, and T. Popescu, Dig. J. Nanomater. Biostruct. (DJNB), 6, No. 3, 1065–1072 (2011).Google Scholar
  32. 32.
    R. Y. Hong, J. H. Li, H. Z. Li, J. Ding, Y. Zheng, and D. G. Wei, J. Magn. Magn. Mater., 320, No. 9, 1605–1614 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • T. A. Lastovina
    • 1
  • A. L. Bugaev
    • 1
  • S. P. Kubrin
    • 2
  • E. A. Kudryavtsev
    • 3
  • A. V. Soldatov
    • 1
  1. 1.International Research Center “Smart materials”Southern Federal UniversityRostov-on-DonRussia
  2. 2.Department of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  3. 3.Joint Research Center “Diagnostics of structure and properties of nanomaterials”Belgorod National Research UniversityRostov-on-DonRussia

Personalised recommendations