Journal of Structural Chemistry

, Volume 57, Issue 7, pp 1398–1406 | Cite as

PtPd-nanoparticles supported by new carbon materials

  • T. I. AsanovaEmail author
  • I. P. Asanov
  • V. A. Tur
  • E. Yu. Gerasimov
  • M. Brzhezinskaya
Applications of Synchrotron Radiation in Structural Chemistry


Nanocomposites based on PtPd nanoparticles with chemical ordering like disordered solid solution on surface of multilayer graphene have been prepared through thermal shock of mechanically obtained mixture of double complex salt [Pd(NH3)4][PtCl6] and different carbon materials–exfoliated graphite, graphite oxide and graphite fluoride. An effect of original carbon precursors on formation of PtPd bimetallic nanoparticles was studied using X-ray absorption spectroscopy (XAFS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). It was shown that the distribution of bimetallic nanoparticles over the multilayer graphene surface as well as the particles size distribution is controlled by the graphene precursors. For all nanocomposites, the surface of the nanoparticles was found to be Pd-enriched. In case when the thermal exfoliated graphite and graphite oxide were used as the graphene precursors a thin graphitized layer covered the nanoparticles surface. Such a graphitized layer was not observed in the nanocomposite, which used the fluorinated graphite as the precursor.


XAFS XPS PtPd bimetallic nanoparticles graphene thermal exfoliated graphite oxide graphite fluorinated graphite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Mulvaney, Langmuir, 12, 788–800 (1996).CrossRefGoogle Scholar
  2. 2.
    R. Kou and Yu. Shao, Electrochem. Commun., 11, 954–957 (2009).CrossRefGoogle Scholar
  3. 3.
    S. Liua, J. Wanga, J. Zeng, J. Ou, Z. Li, X. Liua, and S. Yang, J. Power Sources, 195, 4628–4633 (2010).CrossRefGoogle Scholar
  4. 4.
    Y. Shao, S. Zhanga, C. Wang, Z. Nie, J. Liu, Y. Wang, and Y. Lin, J. Power Sources, 195, 4600–4605 (2010).CrossRefGoogle Scholar
  5. 5.
    C. V. Rao, A. L. Mohana Reddy, Y. Ishikawa, and P. M. Ajayan, Carbon, 49, 931–936 (2011).CrossRefGoogle Scholar
  6. 6.
    P. V. Kamat, J. Phys. Chem. Lett., 2, 242–251 (2011).CrossRefGoogle Scholar
  7. 7.
    C. V. Rao, C. R. Cabrera, and Y. Ishikawa, J. Phys. Chem. C, 115, 21963–21970 (2011).CrossRefGoogle Scholar
  8. 8.
    Yu. Lu, Yu. Jiang, H. Wu, and W. Chen, J. Phys. Chem. C, 117, 2926–2938 (2013).CrossRefGoogle Scholar
  9. 9.
    X. Liu, D. Wang, and Y. Li, Nano Today, 7, 448–466 (2012).CrossRefGoogle Scholar
  10. 10.
    P. V. Kamat, J. Phys. Chem. Lett., 1, 520–527 (2010).CrossRefGoogle Scholar
  11. 11.
    E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, and I. Honma, Nano Lett., 9, 2255–2259 (2009).CrossRefGoogle Scholar
  12. 12.
    E. D. Graifer, V. G Makotchenko, A. S. Nazarov, S.-G. Kim, and V. E. Fedorov, Russ. Chem. Rev., 80, 784–804 (2011).Google Scholar
  13. 13.
    T. Asanova, I. Asanov, A. Zadesenets, E. Filatov, P. Plyusnin, E. Gerasimov, and S. Korenev, J. Therm. Anal. Calorim., 123, 1183–1195 (2016).CrossRefGoogle Scholar
  14. 14.
    L. G. Bulusheva, V. A. Tur, E. O. Fedorovskaya, I. P. Asanov, D. Pontiroli, M. Riccò, and A. V. Okotrub, Carbon, 78, 137–146 (2014).CrossRefGoogle Scholar
  15. 15.
    A. S. Nazarov, N. F. Yudanov, and V. V. Lisiza, Zh. Neorg. Khim., 21, 2273–2276 (1976).Google Scholar
  16. 16.
    B. Ravel and M. Newville, J. Synchrotron Radiat., 12, 537–541 (2005).CrossRefGoogle Scholar
  17. 17.
    M. Newville, J. Synchrotron Radiat., 8, 322–324 (2001).CrossRefGoogle Scholar
  18. 18.
    S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal., 43, 689–713 (2011).CrossRefGoogle Scholar
  19. 19.
    I. P. Asanov, P. P. Semyannikov, and V. M. Paasonen, in: New Trends in Intercalation Compounds for Energy Storage, C. Julien, J. P. Pereira-Ramos, and A. Momchilov (eds.), Springer, Netherlands (2002), pp. 447–454.Google Scholar
  20. 20.
    J. S. Hammond, J. Electroanal. Chem., 78, 55–69 (1977).CrossRefGoogle Scholar
  21. 21.
    H. Wang, T. Maiyalagan, and X. Wang, ACS Catal., 2, 781–794 (2012).CrossRefGoogle Scholar
  22. 22.
    Y. Sato, R. Hagiwara, and Y. Ito, Carbon, 39, 951–956 (2001).CrossRefGoogle Scholar
  23. 23.
    V. M. Paasonen and A. S. Nazarov, Neorg. Mater., 37, 544–548 (2001).CrossRefGoogle Scholar
  24. 24.
    V. G. Makotchenko, D. V. Pinakov, and V. A. Logvinenko, Chem. Asian J., 10, 1761–1767 (2015).CrossRefGoogle Scholar
  25. 25.
    Y. V. Fedoseeva, A. V. Okotrub, I. P. Asanov, D. V. Pinakov, G. N. Chekhova, V. A. Tur, P. E. Plyusnin, D. V. Vyalikh, and L. G. Bulusheva, Phys. Status Solidi B, 251, 1–6 (2014).CrossRefGoogle Scholar
  26. 26.
    J. Zheng, H.-T. Liu, B. Wu, C.-A. Di, Y.-L. Guo, T. Wu, G. Yu, Y.-Q. Liu, and D.-B. Zhu, Sci. Rep., 2, 662 (2012).Google Scholar
  27. 27.
    S. Fung, J. Catal., 58, 454–469 (1979).CrossRefGoogle Scholar
  28. 28.
    S. M. Davis, J. Catal., 117, 432–446 (1989).CrossRefGoogle Scholar
  29. 29.
    A. M. Venezia, Catal. Today, 77, 359–370 (2003).CrossRefGoogle Scholar
  30. 30.
    S. Tougaard, J. Vac. Sci. Technol. A, 21, 1081–1086 (2003).CrossRefGoogle Scholar
  31. 31.
    S. Tougaard, J. Vac. Sci. Technol. A, 23, 741–745 (2005).CrossRefGoogle Scholar
  32. 32.
    S. Tougaard, J. Vac. Sci. Technol. A, 31, 031503–031508 (2013).CrossRefGoogle Scholar
  33. 33.
    W. Qian, R. Hao, J. Zhou, M. Eastman, B. A. Manhat, Q. Sun, A. M. Goforth, J. Jiao, Carbon, 52, 595–604 (2013).CrossRefGoogle Scholar
  34. 34.
    H. J. Huang, D. P. Sun, and X. Wang, Chin. Sci. Bull., 57, 3071–3079 (2012).CrossRefGoogle Scholar
  35. 35.
    M. Acik, G. Lee, C. Mattevi, A. Pirkle, R. M. Wallance, M. Chhowalla, K. Cho, and Y. Chabal, J. Phys. Chem. C, 115, 19761–19781 (2011).CrossRefGoogle Scholar
  36. 36.
    V. Dubois, K. Cuerin, Y. Ahmad, N. Batisse, M. Mar, L. Frezet, W. Hourani, J. L. Bubendorff, J. Parmentier, S. Hajjar-Garreau, and L. Simon, Carbon, 77, 688–704 (2014).CrossRefGoogle Scholar
  37. 37.
    A. Maiti and A. Ricca, Chem. Phys. Lett., 395, 7–11 (2004).CrossRefGoogle Scholar
  38. 38.
    F. Banhart, Nanoscale, 1, 201–213 (2009).CrossRefGoogle Scholar
  39. 39.
    R. Lamber, N. Jaeger, and G. Schulz-Ekloff, Surf. Sci., 227, 15–23 (1990).CrossRefGoogle Scholar
  40. 40.
    T. Oku, G. Schmid, and K. Suganuma, J. Mater. Chem., 8, 2113–2117 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • T. I. Asanova
    • 1
    Email author
  • I. P. Asanov
    • 1
    • 2
  • V. A. Tur
    • 1
  • E. Yu. Gerasimov
    • 3
  • M. Brzhezinskaya
    • 4
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk National Research State UniversityNovosibirskRussia
  3. 3.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  4. 4.Helmholtz Zentrum BerlinInstitute for Nanometre Optics and TechnologyBerlinGermany

Personalised recommendations