Journal of Structural Chemistry

, Volume 57, Issue 2, pp 308–318 | Cite as

High-field solid-state 35Cl NMR in selenium(IV) and tellurium(IV) hexachlorides

Article
  • 58 Downloads

Abstract

We report solid-state 35Cl NMR spectra in three hexachlorides, (NH4)2SeCl6, (NH4)2TeCl6 and Rb2TeCl6. The CQ(35Cl) quadrupole coupling constants in the three compounds were found to be 41.4±0.1 MHz, 30.3±0.1 MHz and 30.3±0.1 MHz, respectively, some of the largest CQ(35Cl) quadrupole coupling constants ever measured in polycrystalline powdered solids directly via 35Cl NMR spectroscopy. The 35Cl EFG tensors are axial in all three cases reflecting the C4v point group symmetry of the chlorine sites. 35Cl NMR experiments in these compounds were only made possible by employing the WURST-QCPMG pulse sequence in the ultrahigh magnetic field of 21.1 T. 35Cl NMR results agree with the earlier reported 35Cl NQR values and with the complementary plane-wave DFT calculations. The origin of the very large CQ(35Cl) quadrupole coupling constants in these and other main-group chlorides lies in the covalent-type chlorine bonding. The ionic bonding in the ionic chlorides results in significantly reduced CQ(35Cl) values as illustrated with triphenyltellurium chloride Ph3TeCl. The high sensitivity of 35Cl NMR to the chlorine coordination environment is demonstrated using tetrachlorohydroxotellurate hydrate K[TeCl4(OH)]∙0.5H2O as an example. 125Te MAS NMR experiments were performed for tellurium compounds to support 35Cl NMR findings.

Keywords

35Cl NMR 35Cl NQR selenium tellurium hexachloride DFT calculations CASTEP NMR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. J. D. Mackenzie and M. E. Smith, Multinuclear Solid-State NMR of Inorganic Materials, Pergamon (2002).Google Scholar
  2. 2.
    P. Pyykkö, Mol. Phys., 106, 1965 (2008).CrossRefGoogle Scholar
  3. 3.
    G. K. Semin, T. A. Babushkina, and G. G. Yakobson, Nuclear Quadrupole Resonance in Chemistry, John Wiley & Sons, New York (1975).Google Scholar
  4. 4.
    Yu. A. Buslaev, E. A. Kravcenko, and L. Kolditz, Coord. Chem. Rev., 82, 9 (1987).CrossRefGoogle Scholar
  5. 5.
    J. Fraissard and O. Lapina (eds.), Explosives Detection Using Magnetic and Nuclear Resonance Techniques. NATO Science for Peace and Security Series B: Physics and Biophysics, Springer (2009).Google Scholar
  6. 6.
    Ju. H. Krieger, S. G. Kozlova, S. P. Gabuda, G. N. Chehova, and Yu. N. Dyadin, Sov. Phys. Solid State, 27, 1875 (1985).Google Scholar
  7. 7.
    L. Pang, F. Brisse, and E. A. C. Lucken, Can. J. Chem., 73, 351 (1995).CrossRefGoogle Scholar
  8. 8.
    P. M. J. Szell and D. L. Bryce, Annu. Rep. NMR Spectrosc., 84, 115 (2015).CrossRefGoogle Scholar
  9. 9.
    D. L. Bryce, C. M. Widdifield, R. P. Chapman, and R. J. Attrell, Chlorine, Bromine, and Iodine Solid-State NMR. Encyclopedia of Magnetic Resonance, Wiley (2011).CrossRefGoogle Scholar
  10. 10.
    C. M. Widdifield, R. P. Chapman, and D. L. Bryce, Annu. Rep. NMR Spectrosc., 66, 195 (2009).CrossRefGoogle Scholar
  11. 11.
    R. P. Chapman, C. M. Widdifield, and D. L. Bryce, Prog. Nucl. Magn. Reson. Spectrosc., 55, 215 (2009).CrossRefGoogle Scholar
  12. 12.
    R. W. Schurko, Acc. Chem. Res., 46, 1985 (2013).CrossRefGoogle Scholar
  13. 13.
    R. W. Schurko, Acquisition of Wideline Solid-State NMR Spectra of Quadrupolar Nuclei. Encyclopedia of Magnetic Resonance, Wiley (2011).CrossRefGoogle Scholar
  14. 14.
    L. A. O’Dell, A. J. Rossini, and R. W. Schurko, Chem. Phys. Lett., 468, 330 (2009).CrossRefGoogle Scholar
  15. 15.
    L. A. O’Dell and R. W. Schurko, Chem. Phys. Lett., 464, 97 (2008).CrossRefGoogle Scholar
  16. 16.
    M. P. Hildebrand, H. Hamaed, A. M. Namespetra, J. M. Donohue, R. Fu, I. Hung, Z. Gan, and R. W. Schurko, CrystEngComm, 16, 7334 (2014).CrossRefGoogle Scholar
  17. 17.
    R. P. Chapman, J. R. Hiscock, P. A. Gale, and D. L. Bryce, Can. J. Chem., 89, 822 (2011).CrossRefGoogle Scholar
  18. 18.
    H. Hamaed, J. M. Pawlowski, B. F. T. Cooper, R. Fu, S. H. Eichhorn, and R. W. Schurko, J. Am. Chem. Soc., 130, 11056 (2008).CrossRefGoogle Scholar
  19. 19.
    R. P. Chapman and D. L. Bryce, Phys. Chem. Chem. Phys., 9, 6219 (2007).CrossRefGoogle Scholar
  20. 20.
    R. P. Chapman and D. L. Bryce, Phys. Chem. Chem. Phys., 11, 6987 (2009).CrossRefGoogle Scholar
  21. 21.
    C. A. O’Keefe, K. E. Johnston, K. Sutter, J. Autschbach, R. Gauvin, J. Trébosc, L. Delevoye, N. Popoff, M. Taoufik, K. Oudatchin, and R. W. Schurko, Inorg. Chem., 53, 9581 (2014).CrossRefGoogle Scholar
  22. 22.
    K. E. Johnston, C. A. O’Keefe, R. M. Gauvin, J. Trébosc, L. Delevoye, J.-P. Amoureux, N. Popoff, M. Taoufik, K. Oudatchin, and R. W. Schurko, Chem. Eur. J., 19, 12396 (2013).CrossRefGoogle Scholar
  23. 23.
    A. J. Rossini, R. W. Mills, G. A. Briscoe, E. L. Norton, S. J. Geier, I. Hung, S. Zheng, J. Autschbach, and R. W. Schurko, J. Am. Chem. Soc., 131, 3317 (2009).CrossRefGoogle Scholar
  24. 24.
    B. E. G. Lucier, K. E. Johnston, W. Xu, J. C. Hanson, S. D. Senanayake, S. Yao, M. W. Bourassa, M. Srebro, J. Autschbach, and R. W. Schurko, J. Am. Chem. Soc., 136, 1333 (2014).CrossRefGoogle Scholar
  25. 25.
    M. A. Hanson, V. V. Terskikh, K. M. Baines, and Y. Huang, Inorg. Chem., 53, 7377 (2014).CrossRefGoogle Scholar
  26. 26.
    F. A. Perras and D. L. Bryce, Angew. Chem., Int. Ed., 51, 4227 (2012).CrossRefGoogle Scholar
  27. 27.
    F. A. Perras, C. M. Widdifield, and D. L. Bryce, Solid State Nucl. Magn. Reson., 45/46, 36 (2012).CrossRefGoogle Scholar
  28. 28.
    W. C. Fernelius, Inorganic Synthesis, vol. 2, McGraw-Hill, N.-Y. (1946).CrossRefGoogle Scholar
  29. 29.
    J. B. Milne, E. J. Gabe, and C. Bensimon, Can. J. Chem., 69, 648 (1991).CrossRefGoogle Scholar
  30. 30.
    M. J. Collins, J. A. Ripmeester, and J. F. Sawyer, J. Am. Chem. Soc., 109, 4113 (1987).CrossRefGoogle Scholar
  31. 31.
    D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, Magn. Reson. Chem., 40, 70 (2002).CrossRefGoogle Scholar
  32. 32.
    S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, Z. Kristallogr., 220, 567 (2005).Google Scholar
  33. 33.
    M. Profeta, F. Mauri, and C. J. Pickard, J. Am. Chem. Soc., 125, 541 (2003).CrossRefGoogle Scholar
  34. 34.
    C. J. Pickard and F. Mauri, Phys. Rev. B, 63, 245101 (2001).CrossRefGoogle Scholar
  35. 35.
    J. R. Yates, C. J. Pickard, and F. Mauri, Phys. Rev. B, 76, 024401 (2007).CrossRefGoogle Scholar
  36. 36.
    G. Engel, Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem., 90, 341 (1935).Google Scholar
  37. 37.
    W. Abriel, Acta Crystallogr. C, 42, 1113 (1986).CrossRefGoogle Scholar
  38. 38.
    A. C. Hazell, Acta Chem. Scand., 20, 165 (1966).CrossRefGoogle Scholar
  39. 39.
    M. Webster and P. H. Collins, J. Chem. Soc., Dalton Trans., 588 (1973).Google Scholar
  40. 40.
    B. Krebs and F.-P. Ahlers, Adv. Inorg. Chem., 35, 235 (1990).CrossRefGoogle Scholar
  41. 41.
    S. P. Gabuda, S. G. Kozlova, O. B. Lapina, and V. V. Terskikh, Chem. Phys. Lett., 282, 245 (1998).CrossRefGoogle Scholar
  42. 42.
    S. P. Gabuda and S. G. Kozlova, J. Phys. Chem. B, 110, 18091 (2006).CrossRefGoogle Scholar
  43. 43.
    S. P. Gabuda and S. G. Kozlova, J. Struct. Chem., 38, 140 (1997).CrossRefGoogle Scholar
  44. 44.
    S. G. Kozlova, S. P. Gabuda, and R. Blinc, Chem. Phys. Lett., 376, 364 (2003).CrossRefGoogle Scholar
  45. 45.
    D. Nakamura, K. Ito, and M. Kubo, J. Am. Chem. Soc., 84, 163 (1962).CrossRefGoogle Scholar
  46. 46.
    D. Nakamura, K. Ito, and M. Kubo, Inorg. Chem., 2, 61 (1963).CrossRefGoogle Scholar
  47. 47.
    R. K. Chadha and J. M. Miller, Can. J. Chem., 60, 2256 (1982).CrossRefGoogle Scholar
  48. 48.
    J. Pietikäinen, A. Maaninen, R. S. Laitinen, R. Oilunkaniemi, and J. Valkonen, Polyhedron, 21, 1089 (2002).CrossRefGoogle Scholar
  49. 49.
    S. M. Närhi, R. Oilunkaniemi, R. S. Laitinen, and M. Ahlgrén, Acta Crystallog., Sect. E, 60, o798 (2004).CrossRefGoogle Scholar
  50. 50.
    M. J. Collins, J. A. Ripmeester, and J. F. Sawyer, J. Am. Chem. Soc., 110, 8583 (1988).CrossRefGoogle Scholar
  51. 51.
    S. Hayashi and K. Hayamizu, Magn. Reson. Chem., 30, 658 (1992).CrossRefGoogle Scholar
  52. 52.
    R. F. Ziolo and M. Extine, Inorg. Chem., 19, 2964 (1980).CrossRefGoogle Scholar
  53. 53.
    A. Chopra, S. Jain, S. K. Srivastava, S. K. Gupta, and R. J. Butcher, Acta Crystallog., Sect. E., 70, o421 (2014).CrossRefGoogle Scholar
  54. 54.
    R. Oilunkaniemi, J. Pietikäinen, R. S. Laitinen, and M. Ahlgrén, J. Organomet. Chem., 640, 50 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of OttawaOttawa, OntarioCanada
  2. 2.Bruker BioSpin CorporationBillericaUSA
  3. 3.National Research Council CanadaOttawa, OntarioCanada

Personalised recommendations