Advertisement

Journal of Structural Chemistry

, Volume 56, Issue 3, pp 517–522 | Cite as

Atomic and electronic structure of CdS-based quantum dots

  • A. N. Kravtsova
  • M. A. Soldatov
  • S. A. Suchkova
  • V. V. Butova
  • A. L. Bugaev
  • M. B. Fain
  • A. V. Soldatov
Proceedings of the Conference “X-Ray and Electronic Spectra and Chemical Bond (XESCB)” Novosibirsk Scientific Center, October 7–11, 2013

Abstract

The ab initio computer design of the CdS-based quantum dots and the cobalt doped CdS quantum dots is carried out. The characteristics features of the atomic and electronic structures of semiconductor colloidal quantum dots on CdS of different sizes are studied, and the effect of cobalt impurity atoms is estimated. We have proved the sensitivity of the X-ray absorption near-edge structure (XANES) method for the verification of the nanosized atomic structural parameters calculated by the methods of computer modeling for small-scale quantum dots of the CdS family, and for the determination of the local environment parameters of the cobalt atom in the quantum dot.

Keywords

quantum dots cadmium sulfide doping atomic and electronic structure computer modeling XANES spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bozyigit and V. Wood, MRS Bull., 38, 731 (2013).CrossRefGoogle Scholar
  2. 2.
    G. P. C. Drummen, Int. J. Mol. Sci., 11, 154–163 (2010).CrossRefGoogle Scholar
  3. 3.
    J. -W. Lee, D.-Y. Son, T. K. Ahn, H.-W. Shin, I. Y. Kim, S.-J. Hwang, M. J. Ko, S. Sul, H. Han, and N.-G. Park, Sci. Rep., 3, 1–8 (2013).Google Scholar
  4. 4.
    J. H. Engel and A. P. Alivisatos, Chem. Mater., 26, 153–162 (2014).CrossRefGoogle Scholar
  5. 5.
    L. Turyanska, R. J. A. Hill, O. Makarovsky, F. Moro, A. N. Knott, O. J. Larkin, A. Patane, A. Meaney, P. C. M. Christianen, M. W. Fay, and R. J. Curry, Nanoscale, 6, 8919–8925 (2014).CrossRefGoogle Scholar
  6. 6.
    F. Moro, L. Turyanska, J. Granwehr, and A. Patane, Phys. Rev., B90, 205428-1–205428-6 (2014).Google Scholar
  7. 7.
    Y. Amit, H. Eshet, A. Faust, A. Patllola, E. Rabani, U. Banin, and A. I. Frenkel, J. Phys. Chem. C, 117, 13688–13696 (2013).CrossRefGoogle Scholar
  8. 8.
    I. N. Demchenko, M. Chernyshova, X. He, R. Minikayev, Y. Syryanyy, A. Derkachova, G. Derkachov, W. C. Stolte, E. Piskorska-Hommel, A. Reszka, and H. Liang, J. Phys.: Conf. Ser., 430, 1–5 (2013).Google Scholar
  9. 9.
    K. Tarafder, Y. Surendranath, J. H. Olshansky, A. P. Alivisatos, and W. Lin-Wang, J. Am. Chem. Soc., 136, 5121–5131 (2014).CrossRefGoogle Scholar
  10. 10.
    S. Kilina, S. Ivanov, and S. Tretiak, J. Am. Chem. Soc., 131, 7717–7726 (2009).CrossRefGoogle Scholar
  11. 11.
    A. Aldongarov, I. Irgibaeva, K. Hermansson, and H. Ahren, Mol. Phys., 112,5/6, 674–682 (2014).CrossRefGoogle Scholar
  12. 12.
    S. Datta, M. Kabir, T. Saha-Dasgupta, and D. D. Sarma, J. Phys. Chem. C, 112, 8206–8214 (2008).CrossRefGoogle Scholar
  13. 13.
    S. Nayereh, G. Elham, and E. Saion, Chalcogenide Lett., 9, No. 7, 321–328 (2012).Google Scholar
  14. 14.
    O. Voznyy, S. M. Thon, A. H. Ip, and E. H. Sargent, J. Phys. Chem. Lett., 4, 987–992 (2013).CrossRefGoogle Scholar
  15. 15.
    O. Voznyy, D. Zhitomirsky, P. Stadler, Z. Ning, S. Hoogland, and E. H. Sargent, ACS Nano, 6, No. 9, 8448–8455 (2012).CrossRefGoogle Scholar
  16. 16.
    J. Y. Woo, J.-H. Ko, J. H. Song, K. Kim, H. Choi, Y.-H. Kim, D. C. Lee, and S. Jeong, J. Am. Chem. Soc., 136, 8883–8886 (2014).CrossRefGoogle Scholar
  17. 17.
    C. S. S. Sandeep, J. M. Azpiroz, W. H. Evers, S. C. Boehme, I. Moreels, K. Sachin, L. D. A. Siebbeles, I. Infante, and A. J. Houtepen, ACS Nano, 8, No. 11, 11499–11511 (2014).CrossRefGoogle Scholar
  18. 18.
    V. S. Gurin, Internet Archive Publication (2009); http://arxiv.org/ftp/arxiv/papers/0912/0912.2177.pdf.Google Scholar
  19. 19.
    L. Mino, G. Agostini, E. Borfecchia, D. Gianolio, A. Piovano, E. Gallo, and C. Lamberti, J. Phys., 46, 72 (2013).Google Scholar
  20. 20.
    A. A. Guda, N. Smolentsev, J. Verbeeck, E. M. Kaidashev, Y. Zubavichus, A. N. Kravtsova, O. E. Polozhentsev, and A. V. Soldatov, Solid State Commun., 151, 1314–1317 (2011).CrossRefGoogle Scholar
  21. 21.
    G. Te. Velde, F. M. Bickelhaupt, E. J. Baerends, Guerra C. Fonseca, S. J. A. van Gisbergen, J. G. Snijders, and T. Ziegler, J. Comput. Chem., 22, 931–967 (2001).CrossRefGoogle Scholar
  22. 22.
    R. W. G. Wyckoff, Crystal Structures, Interscience Publishers, New York (1965).Google Scholar
  23. 23.
    M. A. Bryleva, A. N. Kravtsova, I. N. Scherbakov, S. I. Levchenkov, L. D. Popov, V. A. Kogan, Yu. P. Tupolova, Ya. V. Zubavichus, A. L. Trigub, and A. Soldatov, J. Struct. Chem., 53, No. 2, 295–305 (2012).CrossRefGoogle Scholar
  24. 24.
    M. A. Evsyukova, A. N. Kravtsova, I. N. Scherbakov, S. I. Levchenkov, L. D. Popov, V. A. Kogan, Yu. P. Tupolova, Ya. V. Zubavichus, A. L. Trigub, and A. Soldatov, J. Struct. Chem., 51, 1075–1080 (2010).CrossRefGoogle Scholar
  25. 25.
    G. Kresse and J. Hafner, Phys. Rev. B, 47, No. 1, 558 (1993).CrossRefGoogle Scholar
  26. 26.
    G. Kresse and J. Hafner, Phys. Rev. B, 49, No. 20, 14251 (1994).CrossRefGoogle Scholar
  27. 27.
    G. Kresse and J. Hafner, J. Phys.: Condens. Matter., 6, No. 40, 8245 (1994).Google Scholar
  28. 28.
    G. Kresse and J. Furthmüller, Phys. Rev. B, 54, No. 16, 11169 (1996).CrossRefGoogle Scholar
  29. 29.
    G. Kresse and J. Furthmüller, Comput. Mater. Sci., 6, No. 1, 15–50 (1996).CrossRefGoogle Scholar
  30. 30.
    D. Vanderbilt, Phys. Rev. B, 41, No. 11, 7892 (1990).CrossRefGoogle Scholar
  31. 31.
    F. Ulrich and W. Zachariasen, Z. Kristallogr. — Cryst. Mater., 62, No. 1, 260–273 (1925).Google Scholar
  32. 32.
    J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, and K. Jorissen, Phys. Chem. Chem. Phys., 12, 5503–5513 (2010).CrossRefGoogle Scholar
  33. 33.
    J. J. Rehr, J. J. Kas, M. P. Prange, A. P. Sorini, Y. Takimoto, and F. D. Vila, C. R. Phys., 10, No. 6, 548–559 (2009).CrossRefGoogle Scholar
  34. 34.
    Y. Joly, Phys. Rev. B, 63, 125120 (2001).CrossRefGoogle Scholar
  35. 35.
    J. J. Rehr and R. C. Albers, Rev. Mod. Phys., 72, 621 (2000).CrossRefGoogle Scholar
  36. 36.
    G. Bunker, Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy, Cambridge University Press (2011).Google Scholar
  37. 37.
    A. V. Soldatov, J. Struct. Chem., 49, S102 (2008).CrossRefGoogle Scholar
  38. 38.
    A. V. Soldatov, G. Yu. Smolentsev, A. N. Kravtsova, V. L. Mazalova, I. E. Shtekhin, and T. S. Belikova, Ind. Lab. Mater. Diagn., 74, No. 10, 28 (2008).Google Scholar
  39. 39.
    A. N. Kravtsova, K. A. Lomachenko, A. V. Soldatov, J. Meyer, G. Niedner-Shatteburg, S. Peredkov, W. Eberhardt, and M. Neeb, J. Electron Spectrosc. Relat. Phenom., 195, 189–194 (2014).CrossRefGoogle Scholar
  40. 40.
    G. Smolentsev, A. Guda, K. Haldrup, E. Andreiadis, and M. Chavarot-Kerlidou, J. Phys. Chem. C, 117, 17367–17375 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. N. Kravtsova
    • 1
  • M. A. Soldatov
    • 1
  • S. A. Suchkova
    • 1
  • V. V. Butova
    • 1
  • A. L. Bugaev
    • 1
  • M. B. Fain
    • 1
  • A. V. Soldatov
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations