Advertisement

Journal of Structural Chemistry

, Volume 55, Issue 8, pp 1484–1495 | Cite as

Features of cation packing in crystal forms of a 18-crown-6-containing styryl dye iodide and feasibility of the solid phase [2+2]-autophotocycloaddition reaction in it

  • L. G. Kuz’mina
  • A. I. Vedernikov
  • J. A. K. Howard
  • E. Kh. Lermontova
  • A. V. Churakov
  • M. V. Alfimov
  • S. P. Gromov
Self-Organization in Molecular and Supramolecular Compounds
  • 50 Downloads

Abstract

X-ray structure determinations of three crystal forms of a 18-crown-6-containing styryl dye of the pyridine series in iodide form (1), containing various solvate molecules, namely water (1a), 2,6-dihydroxyoaphthalene (1b), 1,4-hydroquinone (1c), and analysis of crystal packings of these crystals, together with the previously investigated non-solvated form (crystal 1) and the solvates with benzene and water (crystal 1d) has been carried out. Crystal packing in 1a, 1b, 1c, and 1d involves a stacking leading to dimers of the dye cations, structurally preorganized for the [2+2]-photocycloaddition (PCA) reaction. On irradiation of with visible light, the PCA reaction with the centrosymmetric rctt isomer leads to the cyclobutane derivative formation. In the case of 1a and 1b the PCA proceeds with the retention of crystallinity, while with other solvates crystals are transformed into a glass. The glasses keep the form and the shine of the initial crystals, nevertheless. In the cases of the non-solvated crystal form (1), translation-related stacks form, with the geometry inconsistent with that of the preorganized dimer. These crystals are stable in visible light.

Keywords

topochemical [2+2]-photocycloaddition reaction in single crystal crystal packing X-ray study 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. J. M. Schmidt, J. Pure Appl. Chem., 27, 647 (1971).CrossRefGoogle Scholar
  2. 2.
    V. Ramamurthy and K. Venkatesan, Chem. Rev., 87, 433 (1987).CrossRefGoogle Scholar
  3. 3.
    L. R. MacGillivray, Cryst. Eng. Comm., 4, No. 7, 37 (2002).CrossRefGoogle Scholar
  4. 4.
    I. Turowska-Tyrk, J. Phys. Org. Chem., 17, 837 (2004).CrossRefGoogle Scholar
  5. 5.
    C.-H. Huang and D. M. Bassani, Eur. J. Org. Chem., 4041 (2005).Google Scholar
  6. 6.
    T. Friščić and L. R. MacGillivray, Supramol. Chem., 17, 47 (2005).CrossRefGoogle Scholar
  7. 7.
    M. Nagarathinam and J. J. Vittal, Macromol. Rapid Commun., 27, 1091 (2006).CrossRefGoogle Scholar
  8. 8.
    J. Svoboda and B. König, Chem. Rev., 106, 5413 (2006).CrossRefGoogle Scholar
  9. 9.
    D.-K. Bučar, G. S. Papaefstathiou, T. D. Hamilton, et al., Eur. J. Inorg. Chem., 4559 (2007).Google Scholar
  10. 10.
    S. P. Gromilov, Russ. Chem. Bull., Int. Ed., 57, 1325 (2008)].CrossRefGoogle Scholar
  11. 11.
    N. Hoffmann, Chem. Rev., 108, 1052 (2008).CrossRefGoogle Scholar
  12. 12.
    L. R. MacGillivray, J. Org. Chem., 73, 3311 (2008).CrossRefGoogle Scholar
  13. 13.
    L. R. MacGillivray, G. S. Papaefstathiou, T. Friščić, et al., Acc. Chem. Res., 41, 280 (2008).CrossRefGoogle Scholar
  14. 14.
    M. H. Mir, L. L. Koh, G. K. Tan, et al., Angew. Chem. Int. Ed., 49, 390 (2010).CrossRefGoogle Scholar
  15. 15.
    E. Elacqua and L. R. MacGillivray, Eur. J. Org. Chem., 6883 (2010).Google Scholar
  16. 16.
    B. R. Bhogala, B. Captain, A. Parthasarathy, et al., J. Am. Chem. Soc., 132, 13434 (2010).CrossRefGoogle Scholar
  17. 17.
    Y. Sonoda, Molecules., 16, 119 (2011).CrossRefGoogle Scholar
  18. 18.
    E. Elacqua, P. Kaushik, R. H. Groeneman, et al., Angew. Chem. Int. Ed., 51, 1037 (2012).CrossRefGoogle Scholar
  19. 19.
    R. Santra, M. Garai, D. Mondal, et al., Chem. Eur. J., 19, 489 (2013).CrossRefGoogle Scholar
  20. 20.
    S. Bhattacharya, J. Stojaković, B. K. Saha, et al., Org. Lett., 15, 744 (2013).CrossRefGoogle Scholar
  21. 21.
    F. Zhuang, J. Li, G. Jiang, H. Tang, et al., Chem. Mater., 20, 1194 (2008).CrossRefGoogle Scholar
  22. 22.
    A. Papagni, P. Del Buttero, C. Bertarelli, et al., New J. Chem., 34, 2612 (2010).CrossRefGoogle Scholar
  23. 23.
    A. I. Vedernikov, S. P. Gromov, N. A. Lobova, et. al., Russ. Chem. Bull., Int. Ed., 54, 1954 (2005)CrossRefGoogle Scholar
  24. 24.
    L. G. Kuz’mina, A. I. Vedernikov, N. A. Lobova, et al., New J. Chem., 31, 980 (2007).CrossRefGoogle Scholar
  25. 25.
    A. I. Vedernikov, L. G. Kuz’mina, S. K. Sazonov, et. al., Russ. Chem. Bull., Int. Ed., 56, 1860 (2007).CrossRefGoogle Scholar
  26. 26.
    L. G. Kuz’mina, A. I. Vedernikov, S. K. Sazonov, et. al., Crystallogr. Repts., 53, 428 (2008).CrossRefGoogle Scholar
  27. 27.
    L. G. Kuz’mina, A. I. Vedernikov, J. A. K. Howard, et. al., Nanotechnologies in Russia, 3, 408 (2008).CrossRefGoogle Scholar
  28. 28.
    S. P. Gromov, A. I. Vedernikov, L. G. Kuz’mina, et al., Eur. J. Org. Chem., 2587 (2010).Google Scholar
  29. 29.
    L. G. Kuz’mina, A. I. Vedernikov, S. K. Sazonov, et. al., Russ. Chem. Bull., Int. Ed., 60, 1734 (2011).CrossRefGoogle Scholar
  30. 30.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, et al., J. Appl. Cryst., 42, 339 (2009).CrossRefGoogle Scholar
  31. 31.
    L. G. Kuz’mina, A. I. Vedernikov, N. A. Lobova, et al., Russ. Chem. Bull., Int. Ed., 58, 1192 (2009).CrossRefGoogle Scholar
  32. 32.
    J. Haradaand and K. Ogawa, J. Am. Chem. Soc., 126, 3539 (2004).CrossRefGoogle Scholar
  33. 33.
    J. Harada and K. Ogawa, Chem. Soc. Rev., 38, 2244 (2009).CrossRefGoogle Scholar
  34. 34.
    F.H. Allen, Acta Cryst. Sect B, B58, 407 (2002).CrossRefGoogle Scholar
  35. 35.
    K. Muller-Dethlefs and P. Hobza, Chem. Rev., 100, 143 (2000).CrossRefGoogle Scholar
  36. 36.
    C. Janiak, Dalton Trans., 3885 (2000).Google Scholar
  37. 37.
    T. Steiner, Acta Cryst., B54, 456 (1998).CrossRefGoogle Scholar
  38. 38.
    D. A. Dickie, D. Abeysekera, I. D. VcKenzie, et al., Cryst. Eng., 6, 79 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • L. G. Kuz’mina
    • 1
  • A. I. Vedernikov
    • 2
  • J. A. K. Howard
    • 3
  • E. Kh. Lermontova
    • 1
  • A. V. Churakov
    • 1
  • M. V. Alfimov
    • 2
  • S. P. Gromov
    • 2
  1. 1.Kurnakov Institute of General & Inorganic Chemistry of Russian Academy of ScienceMoscowRussia
  2. 2.Photochemistry Centre of Russian Academy of ScienceMoscowRussia
  3. 3.Chemistry DepartmentDurham UniversityDurhamUK

Personalised recommendations