Advertisement

Journal of Structural Chemistry

, Volume 55, Issue 8, pp 1466–1473 | Cite as

Two-dimensional coordination polymers based on pyridine-containing cations of cu(II) and Ni(II) and 1,3,5-benzenetricarboxylate anion and their supramolecular structure

  • L. V. Tsymbal
  • I. L. Andriichuk
  • Ya. D. Lampeka
  • V. B. Arion
Self-Organization in Molecular and Supramolecular Compounds

Abstract

New coordination compounds based on 1,3,5-benzenetricarboxylate (btc3−) and complex cations of copper(II) and nickel(II) with monodentate ligands {{[Cu(py)3]3(btc)2}·4,5H2O} n (1) and {[Ni(py)3(H2O)]3(btc)2} n (2) were obtained. The molecular and crystal structures of these compounds and their isomorphism were determined by X-ray diffraction analysis. Crystals of 1 and 2 are characterized by a layered structure due to the stacking of two-dimensional coordination-polymer layers interacting with each other through C-H…π non-covalent interactions and C-H…O weak hydrogen bonds. It is shown that these compounds are potentially highly porous materials with coordinatively unsaturated metal ions (Lewis acid sites).

Keywords

coordination compounds nickel(II) copper(II) crystal structure two-dimensional coordination polymers non-covalent interactions supramolecular structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. R. Batten, S. M. Neville, and D. R. Turner, Coordination Polymers. Design, Analysis and Application, Royal Society of Chemistry, Cambridge, UK (2008).Google Scholar
  2. 2.
    Design and Construction of Coordination Polymers, M.-C. Hong and L. Chen (eds.), John Wiley & Sons, Inc., Hoboken, (2009).Google Scholar
  3. 3.
    Metal-Organic Frameworks: Design and Application, L. R. Mac-Gillivray (ed.), John Wiley & Sons, Hoboken (2010).Google Scholar
  4. 4.
    C. N. R. Rao, S. Natarajan, and R. Vaidhyanathan, Angew. Chem., Int. Ed., 43, No. 12, 1466 (2004).CrossRefGoogle Scholar
  5. 5.
    Ya. D. Lampeka and L. V. Tsymbal, Theor. Exp. Chem., 40, No. 6, 345 (2004).CrossRefGoogle Scholar
  6. 6.
    M. P. Suh and H. R. Moon, Adv. Inorg. Chem., 59, 39 (2007).CrossRefGoogle Scholar
  7. 7.
    J.-R. Li, R. J. Kuppler, and H.-C. Zhou, Chem. Soc. Rev., 38, No. 5, 1477 (2009).CrossRefGoogle Scholar
  8. 8.
    K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, and J. R. Long, Chem. Rev., 112, No. 2, 724 (2012).CrossRefGoogle Scholar
  9. 9.
    M. P. Suh, H. J. Park, T. K. Prasad, and D.-W. Lim, Chem. Rev., 112, No. 2, 782 (2012).CrossRefGoogle Scholar
  10. 10.
    A. Dhakshinamoorthy, M. Alvaro, A. Corma, and H. Garcia, Dalton Trans., 40, No. 24, 6344 (2011).CrossRefGoogle Scholar
  11. 11.
    A. Corma, H. Garcıa, and F.X. Llabres i Xamena, Chem. Rev., 110, No. 8, 4606 (2010).CrossRefGoogle Scholar
  12. 12.
    D. Farrusseng, S. Aguado, and C. Pinel, Angew. Chem., Int. Ed., 48, No. 41, 7502 (2009).CrossRefGoogle Scholar
  13. 13.
    M. Dincă and J. R. Long, Angew. Chem., Int. Ed., 47, No. 36, 6766 (2008).CrossRefGoogle Scholar
  14. 14.
    J. E. Mondloch, O. Karagiaridi, O. K. Farha, and J. T. Hupp, CrystEngComm., 15, No. 54, 9258 (2013).CrossRefGoogle Scholar
  15. 15.
    Cambridge Structural Database. Version 5.35. Universty of Cambridge, UK.Google Scholar
  16. 16.
    X.-F. Wang, X.-L. Zhang, X. Zhou, J. Li, Y.-F. Kuang, and J.-H. Chen, Z. Anorg. Allg. Chem., 638, No. 9, 1365 (2012).CrossRefGoogle Scholar
  17. 17.
    C. D. Ene, F. Tuna, O. Fabelo, C. Ruiz-Perez, A. M. Madalan, H. W. Roesky, and M. Andruh, Polyhedron, 27, No. 2, 574 (2008).CrossRefGoogle Scholar
  18. 18.
    X.-B. Xu, F.-F. Lan, S.-Y. Yang, M. Li, R.-B. Huang, and L.-S. Zheng, J. Chem. Cryst., 40, No. 6, 551 (2010).CrossRefGoogle Scholar
  19. 19.
    C. J. Kepert, T. J. Prior, and M. J. Rosseinsky, J. Solid State Chem., 152, No. 2, 261 (2000).CrossRefGoogle Scholar
  20. 20.
    T. J. Prior and M. J. Rosseinsky, CrystEngComm., 2, No. 1, 128 (2000).CrossRefGoogle Scholar
  21. 21.
    SAINT-Plus, Version 7.06a and APEX2; Bruker-Nonius AXS Inc.: Madison, WI (2004).Google Scholar
  22. 22.
    G. M. Sheldrick, Acta Cryst. Sect. A., 64, No. 1, 112 (2008).CrossRefGoogle Scholar
  23. 23.
    Spek A.L. PLATON, A Multipurpose Crystallographic Tool, v1.17; Utrecht University: Netherlands (2011).Google Scholar
  24. 24.
    M. Nishio, Y. Umezawa, K. Honda, S. Tsuboyama, and H. Suezawa, CrystEngComm., 11, No. 9, 1757 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • L. V. Tsymbal
    • 1
  • I. L. Andriichuk
    • 1
  • Ya. D. Lampeka
    • 1
  • V. B. Arion
    • 2
  1. 1.Pisarzhevskii Institute of Physical ChemistryNational Academy of Sciences of UkraineKievUkraine
  2. 2.Institute of Inorganic ChemistryUniversity of ViennaViennaAustria

Personalised recommendations