Advertisement

Journal of Structural Chemistry

, Volume 55, Issue 5, pp 816–821 | Cite as

Application of discrete-continuum solvation model in a quantum chemical study of technetium(I) pentacarbonyl bromide decarbonylation

  • D. A. Mal’tsev
  • V. I. BaranovskiiEmail author
Article

Abstract

Decarbonylation thermodynamics and kinetics of technetium pentacarbonyl bromide are studied by scanning the reaction pathway and by calculating the kinetic parameters within the variational transition state theory. Calculations are performed in the gas phase and with taking into account a solvent by two methods: continual (PCM) and discrete-continual with direct quantum chemical consideration of the nearest solvate shell. Carbon tetrachloride and water are used as the solvents.

Keywords

technetium pentacarbonyl bromide variational theory of reaction rates quantum chemical calculation density functional method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Várnai, N. Bernstein, L. Mones, and G. Csányi, J. Phys. Chem. B, 117, No. 40, 12202–12211 (2013).CrossRefGoogle Scholar
  2. 2.
    T. Wang, H. Yin, D. Wang, and M. Valiev, J. Phys. Chem. A, 116, No. 9, 2371–2376 (2012).CrossRefGoogle Scholar
  3. 3.
    J. D. Kubicki, J. Phys. Chem. A, 105, No. 38, 8756–8762 (2001).CrossRefGoogle Scholar
  4. 4.
    A. E. Miroslavov, N. I. Gorshkov, A. L. Lumpov, A. N. Yalfimov, D. N. Suglobov, B. L. Ellis, R. Braddock, A.-M. Smith, M. C. Prescott, R. S. Lawson, and H. L. Sharma, Nuclear Medicine and Biology, 36, No. 1, 73–79 (2009).CrossRefGoogle Scholar
  5. 5.
    A. E. Miroslavov, G. V. Sidorenko, A. A. Lumpov, V. A. Mikhalev, and D. N. Suglobov, Radiochem., 51, No. 1, 5–10 (2009).CrossRefGoogle Scholar
  6. 6.
    R. J. Angelici and F. Basolo, J. Am. Chem. Soc., 84, No. 13, 2495–2499 (1962).CrossRefGoogle Scholar
  7. 7.
    G. Cetini, O. Gambino, G. A. Vaglio, and R. P. Ferrari, Inorg. Chem., 8, No. 6, 1371–1373 (1969).CrossRefGoogle Scholar
  8. 8.
    F. Zingales, M. Graziani, F. Faraone, and U. Belluco, Inorg. Chim. Acta, 1, 172–176 (1967).CrossRefGoogle Scholar
  9. 9.
    D. A. Brown and R. T. Sane, J. Chem. Soc. A: Inorganic, Physical, Theoretical, 2088–2090 (1971).Google Scholar
  10. 10.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakaji-ma, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomel-li, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision B.01. Wallingford CT (2009).Google Scholar
  11. 11.
    B. C. Garrett and D. G. Truhlar, J. Phys. Chem., 83, No. 8, 1052–1079 (1979).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of ChemistrySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations