Advertisement

Journal of Structural Chemistry

, Volume 55, Issue 4, pp 750–756 | Cite as

A small-angle x-ray scattering study of the nanostructural features of high-ash carbon materials

  • Yu. V. LarichevEmail author
  • A. P. Koskin
  • P. M. Eletskii
  • S. A. Poluyanov
  • F. V. Tuzikov
  • A. V. Ishchenko
  • D. A. Zyuzin
Proceedings of the Conference “Methods for Studying the Composition and Structure of Functional Materials,” October 21–25, 2013, Novosibirsk
  • 55 Downloads

Abstract

Nanostructured carbon-silica composite materials are prepared from different compounds in one-pot. They are characterized by BET, transmission electron microscopy, X-ray diffraction, and small-angle X-ray scattering. An effective method of the quantitative analysis of the structural dispersed characteristics of the template phase of silica in these composites is proposed.

Keywords

carbon-silica composites transmission electron microscopy X-ray diffraction small-angle X-ray scattering masking liquid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. V. Plaksin and O. I. Krivonos, Russ. J. Gen. Chem., 51, No. 4, 140 (2007).Google Scholar
  2. 2.
    T. A. Kovalenko and L. N. Adeeva, Chemistry for Sustainable Development, 18, No. 2, 189 (2010).Google Scholar
  3. 3.
    L. Li, H. Song, and X. Chen, Micropor. Mesopor. Mat., 94, 9 (2006).CrossRefGoogle Scholar
  4. 4.
    J. Choma, K. Jedynak, M. Marszewski, et al., Appl. Surface Sci., 258, 3763 (2012).CrossRefGoogle Scholar
  5. 5.
    T. Kudo, Y. Ikeda, T. Watanabe, et al., Solid State Ionics, 152/153, 833 (2002).CrossRefGoogle Scholar
  6. 6.
    A. Jena, N. Munichandraiah, and S. A. Shivashankar, J. Power Sources, 237, 156 (2013).CrossRefGoogle Scholar
  7. 7.
    H. Xiong, H. N. Pham, and A. K. Datye, J. Catalysis, 302, 93 (2013).CrossRefGoogle Scholar
  8. 8.
    C. Moreno-Castilla, F. J. Maldonado-Hodar, F. Carrasco-Marin, et al., Langmuir, 18, 2295 (2002).CrossRefGoogle Scholar
  9. 9.
    M. S. Mel’gunov, E. A. Mel’gunova, V. I. Zaikovskii, et al., Langmuir, 19, No. 24, 10426 (2003).CrossRefGoogle Scholar
  10. 10.
    P. Valle-Vigon, M. Sevilla, and A. B. Fuertes, Materials Chemistry and Physics, 139, 281 (2013).CrossRefGoogle Scholar
  11. 11.
    Yu. V. Larichev, P. M. Eletskii, F. V. Tuzikov, et al., Catalysis in Industry, 5(4), 350 (2013).CrossRefGoogle Scholar
  12. 12.
    M. S. Mel’gunov, V. B. Fenelonov, T. A. Gorodetskaya, et al., J. Colloid Interface Sci., 229, No. 2, 431 (2000).CrossRefGoogle Scholar
  13. 13.
    M. S. Mel’gunov, V. B. Fenelonov, R. Leboda, et al., Carbon, 39, No. 3, 357 (2001).CrossRefGoogle Scholar
  14. 14.
    A. P. Koskin, K. S. Golokhvast, I. G. Danilova, et al., Chemistry for Sustainable Development, 3, 329 (2013).Google Scholar
  15. 15.
    M. Ghiaci, A. Abbaspur, R. Kia, et al., Cat. Comm., 8, 49 (2007).CrossRefGoogle Scholar
  16. 16.
    A. A. Greish, Russ. J. Gen. Chem., 48, 92 (2004).Google Scholar
  17. 17.
    P. M. Yeletsky, V. A. Yakovlev, M. S. Mel’gunov, et al., Micropor. Mesopor. Mat., 121, Nos. 1–3, 34 (2009).CrossRefGoogle Scholar
  18. 18.
    Yu. V. Larichev and F. V. Tuzikov, Kinet. Katal., 54, No. 5, 669 (2013).CrossRefGoogle Scholar
  19. 19.
    Yu. V. Larichev and F. V. Tuzikov, J. Appl. Cryst., 46,Part 3, 752 (2013).CrossRefGoogle Scholar
  20. 20.
    P. V. Konarev, M. V. Petoukhov, V. V. Volkov, et al., J. Appl. Cryst., 39, 277 (2006).CrossRefGoogle Scholar
  21. 21.
    Yu. V. Larichev, B. L. Moroz, and V. I. Bukhtiyarov, Appl. Surf. Sci., 258, 1541 (2011).CrossRefGoogle Scholar
  22. 22.
    Yu. I. Ermakov, V. F. Surovikin, G. V. Plaksin, et al., React. Kinet. Catal. Lett., 32, 435 (1987).CrossRefGoogle Scholar
  23. 23.
    Yu. V. Larichev, D. A. Shlyapin, P. G. Tsyrul’nikov, et al., Catal. Lett., 120, Nos. 3/4, 204 (2008).CrossRefGoogle Scholar
  24. 24.
    Yu. V. Larichev, I. P. Prosvirin, D. A. Shlyapin, et al., Kinet. Katal., 46, No. 4, 635 (2005).CrossRefGoogle Scholar
  25. 25.
    D. I. Svergun and L. A. Feigin, X-ray and Neutron Small-Angle Scattering [in Russian], Nauka, Moscow (1986).Google Scholar
  26. 26.
    L. B. Okhlopkova, M. A. Kerzhentsev, F. V. Tuzikov, et al., J. Nanoparticle Res., 14, 1089 (2012).CrossRefGoogle Scholar
  27. 27.
    R. A. Brown, A. K. Kercher, T. H. Nguyen, et al., Organic Geochemistry, 37, 321 (2006).CrossRefGoogle Scholar
  28. 28.
    K. B. Offan, V. S. Petrov, and A. A. Efremov, Khimiya Rastitel’nogo Syr’ya, 2, 61 (1999).Google Scholar
  29. 29.
    W. T. Tsai, S. C. Liu, and C. H. Hsieh, J. Anal. Appl. Pyrolysis, 93, 63 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Yu. V. Larichev
    • 1
    • 2
    Email author
  • A. P. Koskin
    • 1
  • P. M. Eletskii
    • 1
  • S. A. Poluyanov
    • 1
  • F. V. Tuzikov
    • 1
    • 2
  • A. V. Ishchenko
    • 1
  • D. A. Zyuzin
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations