Advertisement

Journal of Structural Chemistry

, Volume 55, Issue 1, pp 23–29 | Cite as

A quantum chemical study of the structure of dodecasilsequioxane H12Si12O18

  • S. G. Semenov
  • M. E. Bedrina
Article
  • 57 Downloads

Abstract

Quantum chemical B3LYP/cc-pVTZ, PBE0/cc-pVTZ, and MP2(full)/6-311G(d,p) methods are used to calculate the structural parameters of dodecasilsequioxane H12Si12O18 and the H12Si12O 18 + cation. According to DFT/cc-pVTZ calculations the energy of H12Si12O18 (D 6h ) is 1.3–1.7 kcal/mol higher than the energy of H12Si12O18 (D 2d ). A reduction of the basis set results in a greater energy difference of H12Si12O18 isomers. For the cation 2 B 2u and 2 B 1 electronic states are obtained, which correspond to symmetric equilibrium structures H12Si12O 18 + (D 6h ) and (D 2) respectively. For the He@H12Si12O18 endocomplex the D 2d symmetry is obtained; for He2@H12Si12O18 the D 2h symmetry; and for H2@H12Si12O18 the D 6h symmetry.

Keywords

dodecasilsequioxane endocomplexes symmetry structure ionization B3LYP PBE0 MP2(full) cc-pVTZ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Ya. Lukevits, O. A. Pudova, and R. Ya. Sturkovich, Molecular Structure of Organosilicon Compounds [in Russian], Zinatne, Riga (1988).Google Scholar
  2. 2.
    M. G. Voronkov and V. I. Lavrentyev, Topics in Current Chem., 102, 199–236 (1982).CrossRefGoogle Scholar
  3. 3.
    R. Sasamori, Y. Okaue, T. Isobe, and Y. Matsuda, Science, 265, 1691–1693 (1994).CrossRefGoogle Scholar
  4. 4.
    M. Päch and R. Stösser, J. Phys. Chem. A, 101, No. 44, 8360/8361 (1997).CrossRefGoogle Scholar
  5. 5.
    R. Stösser and M. Päch, Appl. Rad. a. Isotop., 55, No. 2, 215–220 (2001).CrossRefGoogle Scholar
  6. 6.
    P. A. Agaskar, V. W. Day, and W. G. Klemperer, J. Am. Chem. Soc., 109, No. 18, 5554–5556 (1987).CrossRefGoogle Scholar
  7. 7.
    P. A. Agaskar and W. G. Klemperer, Inorg. Chim. Acta, 229, Nos. 1/2, 355–364 (1995).CrossRefGoogle Scholar
  8. 8.
    S. R. Hall, F. H. Allen, and I. D. Brown, Acta Crystallogr. A, 47, Pt. 6, 655–685 (1991).CrossRefGoogle Scholar
  9. 9.
    K. W. Törnroos, H.-B. Bürgi, G. Calzaferri, K. W. Törnroos, and H. Bürgi, Acta Crystallogr. B, 51,Pt. 2, 155–161 (1995).CrossRefGoogle Scholar
  10. 10.
    C. W. Earley, J. Phys. Chem., 98, No. 35, 8693–8698 (1994).CrossRefGoogle Scholar
  11. 11.
    B. Tejerina and M. S. Gordon, J. Phys. Chem. B, 106, No. 45, 11764–11770 (2002).CrossRefGoogle Scholar
  12. 12.
    K.-H. Xiang, R. Pandey, U. C. Pernisz, and C. Freeman, J. Phys. Chem. B, 102, No. 44, 8704–8711 (1998).CrossRefGoogle Scholar
  13. 13.
    T. Kudo, M. Akasaka, and M. S. Gordon, Theor. Chem. Account, 120, 155–166 (2008).CrossRefGoogle Scholar
  14. 14.
    T. Kudo, T. Taketsugu, and M. S. Gordon, J. Phys. Chem. A, 115, No. 13, 2679–2691 (2011).CrossRefGoogle Scholar
  15. 15.
    S. G. Semenov and M. E. Bedrina, J. Struct Chem., 54, No. 1, 159–163 (2013).CrossRefGoogle Scholar
  16. 16.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian-03, Rev. B.05, Gaussian, Pittsburgh PA (2003).Google Scholar
  17. 17.
    D. Moran, A. C. Simmonett, F. E. Leach III, W. D. Allen, P. v. R. Schleyer, and H. F. Schaeffer III, J. Am. Chem. Soc., 128, No. 29, 9342/9343 (2006).CrossRefGoogle Scholar
  18. 18.
    S. G. Semenov and Yu. F. Sigolaev, Koordinats. Khim., 11, No. 12, 1635–1638 (1985).Google Scholar
  19. 19.
    A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys., 83, No. 2, 735–746 (1985).CrossRefGoogle Scholar
  20. 20.
    E. D. Glendening, A. E. Reed, and F. Weinhold, NBO, Ver. 3.1. Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations