Journal of Structural Chemistry

, Volume 53, Issue 2, pp 295–305 | Cite as

X-ray absorption spectroscopic and magneto-chemical analysis of the atomic structure of copper(II) complexes with diacetyl monoxime 1′-phthalazinyl hydrazone

  • M. A. Bryleva
  • A. N. Kravtsova
  • I. N. Shcherbakov
  • S. I. Levchenkov
  • L. D. Popov
  • V. A. Kogan
  • Yu. P. Tupolova
  • Ya. V. Zubavichus
  • A. L. Trigub
  • A. V. Soldatov
Article

Abstract

The atomic structure of copper(II) complexes based on diacetyl monoxime 1′-phthalazinyl hydrazone is studied by XANES spectral analysis and magnetochemistry. The XANES spectra at the CuK-edge are measured in C24H24N10Cu2O2 and C24H24N10Cu2O2 complexes. The calculations of the CuK-XANES spectra of the complexes in question are performed for a few structural models based on the full-potential finite difference method. By low-temperature magnetochemistry magnetic exchange parameters are determined, and a quantum chemical simulation of the exchange interaction is carried out within the broken symmetry approximation. Based on a combined analysis of the XANES spectra and magnetic exchange parameters, the most probable structural models of C24H24N10Cu2O2 and C24H24N10Cu2O2 complexes are found.

Keywords

copper(II) complexes atomic structure electronic structure XANES spectroscopy magnetochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Kogan, S. I. Levchenkov, L. D. Popov, and I. N. Shcherbakov, Ross. Khim. Zh., LIII, No. 1, 86–93 (2009).Google Scholar
  2. 2.
    P. Vicini, M. Incerty, I. A. Doytchinova, P. La Colla, B. Busonera, and R. Loddo, Eur. J. Med. Chem., 48, No. 5, 624 (2006).CrossRefGoogle Scholar
  3. 3.
    B. Segura-Pacheco, C. Trejo-Becerril, E. Perez-Cardenas, L. Taja-Chayeb, I. Mariscal, A. Chavez, C. Acuna, A. M. Salazar, M. Lizano, and A. Duenas-Gonzalez, Clinical Cancer Research, 9, No. 5, 1596 (2003).Google Scholar
  4. 4.
    T. Razvi, M. Ramalingam, and P. B. Sattur, Ind. J. Chem., 28B, No. 11, 987 (1989).Google Scholar
  5. 5.
    G. Giorgi, F. Ponticelli, L. Chiasserini, and C. Pellerano, J. Chem. Soc., Perkin Trans. Part 2, 2259 (2000).Google Scholar
  6. 6.
    I. N. Shcherbakov, L. D. Popov, S. I. Levchenkov, A. N. Morozov, V. A. Kogan, A. D. Vikrishchuk, Zh. Obshch. Khim., 79, No. 4, 663–669 (2009).Google Scholar
  7. 7.
    S. K. Mandal, L. K. Thompson, M. J. Newlands, J.-P. Charland, and E. J. Gabe, Inorg. Chim. Acta, 178, No. 2, 169 (1990).CrossRefGoogle Scholar
  8. 8.
    T. Wen, L. K. Thompson, F. L. Lee, and E. J. Gabe, Inorg. Chem., 27, No. 23, 4190 (1988).CrossRefGoogle Scholar
  9. 9.
    L. D. Popov, I. N. Shcherbakov, S. I. Levchenkov, Yu. P. Tupolova, V. A. Kogan, and V. V. Lukov, J. Coord. Chem., 61, No. 3, 392 (2008).CrossRefGoogle Scholar
  10. 10.
    G. Paolucci, S. Stelluto, S. Sitran, D. Ajo, F. Benetollo, A. Polo, and G. Bombieri, Inorg. Chim. Acta, 193, No. 1, 57 (1992).CrossRefGoogle Scholar
  11. 11.
    L. D. Popov, S. I. Levchenkov, I. N. Shcherbakov, Yu. P. Tupolova, A. A. Zubrnko, I. E. Melkozerova, V. V. Lukov, and V. A. Kogan, Zh. Obshch. Khim., 80, No. 9, 1535–1541 (2010).Google Scholar
  12. 12.
    L. D. Popov, S. I. Levchenkov, I. N. Shcherbakov, V. V. Minin, É. B. Kaimakan, Yu. P. Tupolova, and V. A. Kogan, Zh. Obshch. Khim., 80, No. 12, 2040–2050 (2010).Google Scholar
  13. 13.
    L. D. Popov, S. I. Levchenkov, I. N. Shcherbakov, V. A. Kogan, and Yu. P. Tupolova, Zh. Obshch. Khim., 80, No. 3, 471–478 (2010).Google Scholar
  14. 14.
    A. Bianconi, in: X-ray Absorption: Principles, Applications and Techniques of EXAFS, SEXAFS and XANES, R. Prins and D. C. Koningsberger (eds.), John Wiley & Sons, New York (1988).Google Scholar
  15. 15.
    A. N. Kravtsova, A. V. Soldatov, G. Yu. Smolentsev, V. L. Mazalova, I. E. Shtekhin, and T. S. Belikova, Zav. Lab. Diagnostika Materialov, 74, No. 10, 28–31 (2008).Google Scholar
  16. 16.
    A. V. Soldatov, J. Struct. Chem., 49,Suppl., S105–S109 (2008).Google Scholar
  17. 17.
    M. C. Feiters, G. A. Metselaar, B. B. Wentzel, R. J. M. Nolte, S. Nikitenko, D. C. Sherrington, Y. Joly, G. Yu. Smolentsev, A. N. Kravtsova, and A. V. Soldatov, Industr. Engineer. Chem. Res., 44, 8631–8640 (2005).CrossRefGoogle Scholar
  18. 18.
    A. V. Soldatov, G. Smolentsev, A. N. Kravtsova, A., G. Yalovega, M. C. Feiters, G. A. Metselaar, and Y. Joly, Radiat. Phys. Chem., 75, 1866–1868 (2006).CrossRefGoogle Scholar
  19. 19.
    A. V. Soldatov, A. N. Kravtsova, L. N. Mazalov, S. V. Trubina, N. A. Kryuchkova, and G. B. Sukharina, J. Struct. Chem., 46, No. 6, 1061–1065 (2007).CrossRefGoogle Scholar
  20. 20.
    G. B. Sukharina, A. V. Soldatov, A. N. Kravtsova, L. N. Mazalov, S. V. Trubina, S. B. érenburg, N. V. Bausk, and N. A. Kryuchkova, Poverhnost’, No. 6, 46–48 (2009).Google Scholar
  21. 21.
    G. B. Sukharina, A. N. Kravtsova, A. V. Soldatov, Ya. V. Zubavichus, N. A. Kryuchkova, and L. N. Mazalov, J. Phys.: Conference Series, 190, 012148 (2009).CrossRefGoogle Scholar
  22. 22.
    M. A. Evsyukova, A. N. Kravtsova, I. N. Shcherbakov, L. D. Popov, S. I. Levchenkov, Yu. P. Tupolova, Ya. V. Zubavichus, A. L. Trigub, and A. V. Soldatov, J. Struct. Chem., 51, No. 6, 1075–1080 (2010).CrossRefGoogle Scholar
  23. 23.
    A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zubavichus, Nucl. Instr. Meth. Phys. Res. A, 603, 95–98 (2009).CrossRefGoogle Scholar
  24. 24.
    G. I. Mireia, Josep M. Luis, Sola Miquel, and Swart Marcel, Phys. Chem. A, 112, 6384–6391 (2008).CrossRefGoogle Scholar
  25. 25.
    G. Te. Velde, F. M. Bickelhaupt, E. J. Baerends, Guerra C. Fonseca, S. J. A. Gisbergen van, J. G. Snijders, and T. Ziegler, J. Comp. Chem., 22, 931–967 (2001).CrossRefGoogle Scholar
  26. 26.
    N. C. Handy and A. J. Cohen, Mol. Phys., 99, No. 5,403 (2001).Google Scholar
  27. 27.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, No. 18, 3865 (1996).CrossRefGoogle Scholar
  28. 28.
    A. P. Ginsberg, J. Am. Chem. Soc., 102, 111 (1980).CrossRefGoogle Scholar
  29. 29.
    L. Noodleman, C. Y. Peng, D. A. Case, and J. M. Mouesca, Coord. Chem. Rev., 144, 119 (1995).CrossRefGoogle Scholar
  30. 30.
    A. D. Becke, Phys. Rev. A, 38, 3098 (1988).CrossRefGoogle Scholar
  31. 31.
    J. P. Perdew, Phys. Rev. B, 33, 8822 (1986).CrossRefGoogle Scholar
  32. 32.
    A. N. Mansour, A. Dmitrienko, and A. V. Soldatov, Phys. Rev. B, 55, 15531–15536 (1997).CrossRefGoogle Scholar
  33. 33.
    A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. Conradson, Phys. Rev. B, 58, No. 12, 7565–7576 (1998).CrossRefGoogle Scholar
  34. 34.
    J. J. Rehr, J. J. Kas, P. Prange Micah, A. P. Sorini, Y. Takimoto, and F. Vila, Comptes Rendus Physique, 10, No. 6, 548–559 (2009).CrossRefGoogle Scholar
  35. 35.
    Y. Joly, Phys. Rev. B, 63, 125120 (2001).CrossRefGoogle Scholar
  36. 36.
    G. Smolentsev, A. V. Soldatov, and M. C. Feiters, Phys. Rev. B, 75, 144106 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. A. Bryleva
    • 1
  • A. N. Kravtsova
    • 1
  • I. N. Shcherbakov
    • 2
  • S. I. Levchenkov
    • 2
  • L. D. Popov
    • 2
  • V. A. Kogan
    • 2
  • Yu. P. Tupolova
    • 2
  • Ya. V. Zubavichus
    • 3
  • A. L. Trigub
    • 3
  • A. V. Soldatov
    • 1
  1. 1.Research Center for Nanoscale Structure of MatterSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Faculty of ChemistrySouthern Federal UniversityRostov-on-DonRussia
  3. 3.Kurchatov Center of Synchrotron Radiation and NanotechnologiesMoscowRussia

Personalised recommendations