Advertisement

Journal of Structural Chemistry

, Volume 52, Issue 1, pp 106–110 | Cite as

A second attempt to establish an analytical expression to steam-water dipole orientation parameter using the Boubaker polynomials expansion scheme

  • W. X. Yue
  • H. Koçak
  • D. H. Zhang
  • A. Yıldırım
Article

Abstract

In this paper, an analytical expression to the steam-water dipole orientation parameter is proposed. The calculations have been carried out under the presumptions that: the electric properties of the water molecules are characterized completely by a permanent dipole moment and a constant scalar polarizability, that translational fluctuations may be neglected, and that the positions are orientation-free. The results are presented in the form of continuous and integrable expressions that can be easily compared to the precedent studies as well as involved in similar analytical models.

Keywords

steam-water BPES permanent dipole moment analytical expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Chistyakov, J. Phys. Chem., 81, No. 6, 5–8 (2007).Google Scholar
  2. 2.
    N. M. Putintsev and D. N. Putintsev, J. Phys. Chem., 82, No. 11, 2018–2024 (2008).Google Scholar
  3. 3.
    N. M. Putintsev and D. N. Putintsev, J. Phys. Chem., 81, No. 4, 572–576 (2007).Google Scholar
  4. 4.
    Yu. Tovbin, J. Phys. Chem., 84, No. 2, 180–194 (2010).Google Scholar
  5. 5.
    S. G. Dyakonov, A. V. Klinov, and G. S. Dyakonov, J. Phys. Chem., 83, No. 6, 180–202 (2009).Google Scholar
  6. 6.
    G. Jansco and A. Van Hook, Chem. Rev., 74, 689–694 (1974).CrossRefGoogle Scholar
  7. 7.
    G. Nemethy and H. A. Scheraga, J. Chem. Phys., 36, 3382–3388 (1962).CrossRefGoogle Scholar
  8. 8.
    L. Onsager, J. Am. Chem. Soc., 58, 1486–1490 (1936).CrossRefGoogle Scholar
  9. 9.
    J. G. Kirkwood, J. Chem. Phys., 7, 911–919 (1939).CrossRefGoogle Scholar
  10. 10.
    P. G. Hill and R. D. C. MacMillan, J. Phys. Chem. Ref. Data, 9, 735–744 (1980).CrossRefGoogle Scholar
  11. 11.
    M. Uematsu and E. U. Franek, J. Phys. Chem. Ref. Data, 9, 1291–1299 (1980).CrossRefGoogle Scholar
  12. 12.
    O. D. Oyodum, O. B. Awojoyogbe, M. Dada, and J. Magnuson, Eur. Phys. J.-Appl. Phys., 46, 21201–21211 (2009).CrossRefGoogle Scholar
  13. 13.
    A. Belhadj, O. Onyango, and N. Rozibaeva, J. Thermophys. Heat Transf., 23, 639–653 (2009).CrossRefGoogle Scholar
  14. 14.
    D. H. Zhang and F. W. Li, Ir. J. App. Phys. Lett., 2, 25–33 (2009).Google Scholar
  15. 15.
    A. Chaouachi, K. Boubaker, M. Amlouk, and H. Bouzouita, Eur. Phys. J. Appl. Phys., 37, 105–111 (2007).CrossRefGoogle Scholar
  16. 16.
    A. Yıldırım, S. T. Mohyud-Din, and D. H. Zhang, Comp. & Math. Appl., 59, 2473–2488 (2010).CrossRefGoogle Scholar
  17. 17.
    H. Labiadh, J. Diff. Eq. & C. Proc., 1, 172–177 (2007).Google Scholar
  18. 18.
    S. Tabatabaei, T. Zhao, O. Awojoyogbe, and F. Moses, Heat Mass Transf., 45, 1247–1251 (2009).CrossRefGoogle Scholar
  19. 19.
    S. Slama, J., M. Bouhafs, and K. B. Ben Mahmoud, Num. Heat Transf. Part A, 55, 401–411 (2009).CrossRefGoogle Scholar
  20. 20.
    T. G. Zhao, L. Naing, and W. X. Yue, Mat. Zametki, 87, No. 2, 175–178 (2010).Google Scholar
  21. 21.
    B. Dubey, T. G. Zhao, M. Jonsson, and H. Rahmanov, J. Theor. Biology, 264, 154–160 (2010).CrossRefGoogle Scholar
  22. 22.
    K. Heger, M. Uematsu, and E. U. Franck, Ber. Bunsenges. Phys. Chem., 84, 758–765 (1980).Google Scholar
  23. 23.
    Y. Marcus, J. Molec. Liquids, 79, 151–166 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • W. X. Yue
    • 1
  • H. Koçak
    • 2
  • D. H. Zhang
    • 3
  • A. Yıldırım
    • 2
  1. 1.Department of MathematicsLanzhou City UniversityLanzhouP.R. China
  2. 2.Ege UniversityBornova, IzmirTurkey
  3. 3.South China UniversityGuangzhouP. R. China

Personalised recommendations