Kinetic and Thermodynamic Characteristics of Lactate Dehydrogenase in Skeletal Muscles of Homeo- and Heterothermic Animals at Low Body Temperatures

  • R. A. Khalilov
  • A. M. DzhafarovaEmail author
  • S. I. Khizrieva
  • V. R. Abdullaev
Comparative and Ontogenic Physiology


Kinetic and thermodynamic characteristics of lactate dehydrogenase (LDG) in skeletal muscles were analyzed in homeothermic animals (rats) under deep (20°C) artificial hypothermia and in heterothermic animals (ground squirrels) under natural hypothermia (hibernation). It was found that, despite different etiology of hypothermic states, changes in some LDG parameters both in homeo- and heterothermic animals at low body temperatures are unidirectional: the catalytic efficiency decreases, the optimum point on the concentration curve shifts towards higher concentrations, efficient activation energies and Ki values increase. At the same time, multidirectional changes in LDG Vmax and KM values as well as the degree of their manifestation in rats versus ground squirrels at low body temperatures indicate that the mechanisms, which regulate activity of this enzyme in animals with diverse strategies of thermal adaptation, are quite different.

Key words

rats ground squirrels hypothermia hibernation muscles lactate dehydrogenase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hochachka, P. and Somero, G., Biochemical Adaptation, Oxford, 2002.Google Scholar
  2. 2.
    Emirbekov, E.Z. and Klichkhanov, N.K., Svobodnoradikal’nye protsessy i sostoyanie membran pri gipotermii (Free-radical Processes and the State of Membranes under Hypothermia), Rostov-on-Don, 2011.Google Scholar
  3. 3.
    Meilanov, I.S. and Avshalumov, M.V., Thermal compensation in homeothermic animals, Ross. Fiziol. Zh., 1997, vol. 83, no. 9, pp. 102–106.Google Scholar
  4. 4.
    Khalilov, R.A., Dzhafarova, A.M., Dzhabrailova, R.N., and Khizrieva, S.I., The kinetic and thermodynamic characteristics of lactate dehydrogenase in the rat brain during hypothermia, Neurochemical J., 2016, vol. 10, no. 2, pp. 156–165.CrossRefGoogle Scholar
  5. 5.
    Ruf, T. and Geiser, F., Daily torpor and hibernation in birds and mammals, Biol. Rev., 2015, vol. 90, pp. 891–926.CrossRefGoogle Scholar
  6. 6.
    Kalabukhov, N.I., Spyachka mlekopitayushchikh (Hibernation in Mammals), Moscow, 1985.Google Scholar
  7. 7.
    Carey, H.V., Andrews, M.T., and Martin, S.L., Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature, Physiol. Rev., 2003, vol. 83, no. 4, pp. 1153–1181.CrossRefGoogle Scholar
  8. 8.
    Khalilov, R.A., Meilanov, I.S., and Dzhafarova, A.M., A study of the kinetic charatceristics of lactate dehydrogenase in gastrocnemius muscles of ground squirrels during hibernation and in the dynamics of induced warming, Vestn. DNTs RAN, 2012, iss. 46, pp. 40–44.Google Scholar
  9. 9.
    Khalilov, R.A., Dzhafarova, A.M., and Dzhabrailova, R.N., A study of temperature dependence of lactate dehydrogenase in muscles of ground squirrels during hypothermia, Vestn. DGU, iss. 6, pp. 114–119.Google Scholar
  10. 10.
    Lowry, D.H., Rosembrough, H.J., and Farr, A.L., Protein measurement with the Pholin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.Google Scholar
  11. 11.
    Zakhartsev, M., Johansen, T., Portner, H.O., and Blust, R., Effects of temperature acclimation on lactate dehydrogenase of cod (Gadus morhua): genetic, kinetic and thermodynamic aspects, J. Exp. Biol., 2004, vol. 207, pp. 95–112.CrossRefGoogle Scholar
  12. 12.
    Oda, T., Shimizu, K., Yamaguchi, A., Satoh, K., and Matsumoto, K., Hypothermia produces rat liver proteomic changes as in hibernating mammals but decreases endoplasmic reticulum chaperones, Cryobiol., 2012, vol. 65, pp. 104–112.CrossRefGoogle Scholar
  13. 13.
    Katzenback, B.A., Dawson, N.J., and Storey, K.B., Purification and characterization of a urea sensitive lactate dehydrogenase from the liver of the African clawed frog, Xenopus laevis, J. Comp. Physiol., 2014, vol. 184, pp. 601–611.CrossRefGoogle Scholar
  14. 14.
    Fan, J., Hitosugi, T., Chung, T., Xie, J., Ge, Q., Gu, T., Polakiewicz, R., et al., Tyrosine phosphorylation of lactate dehydrogenase a is important for NADH/NAD+ redox homeostasis in cancer cells, Mol. Cell. Biol., 2011, vol. 31, no. 24, pp. 4938–4950.CrossRefGoogle Scholar
  15. 15.
    Forlemu, N., Njabonl, E., Carlson, K., Schmidt, E., Waingeh, V., and Thomasson, K., Ionic strength dependence of F-actin and glycolytic enzyme associations: a Brownian dynamics simulations approach, Proteins, 2011, vol. 79, no.10, pp. 2813–2827.CrossRefGoogle Scholar
  16. 16.
    Terao, Y., Miyamoto, S., Hirai, K., Kamiguchi, H., Ohta, H., Shimojo, M., Kiyota, Y., Asahi, S., Sakura, Y., and Shintani, Y., Hypothermia enhances heat-shock protein 70 production in ischemic brains, Neuroreport., 2009, vol. 20, no. 8, pp. 745–749.CrossRefGoogle Scholar
  17. 17.
    Peng, H.L., Deng, H., Dyer, R.B., and Callender, R., Energy landscape of the Michaelis complex of lactate dehydrogenase: relationship to catalytic mechanism, Biochem., 2014, vol. 53, pp. 1849–1857.CrossRefGoogle Scholar
  18. 18.
    Pastukhov, Yu.F., Nevredinova, Z.G., and Slovikov, B.I., Annual budget of activity and energy costs in hibernating mammals, Dokl. Akad. Nauk SSSR, 1989, vol. 305, pp. 1270–1273.Google Scholar
  19. 19.
    Cantó, C., Gerhart-Hines, Z., Feige, J.N., Lagouge, M., Noriega, L., Milne, J.C., Elliott, P.J., Puigserver, P., and Auwerx, J., AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity, Nature, 2009, vol. 458, pp. 1056–1060.CrossRefGoogle Scholar
  20. 20.
    Vermillion, K.L., Anderson, K.J., Hampton, M., and Andrews, M.T., Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal, Physiol. Genomics, 2015, vol. 47, pp. 58–74.CrossRefGoogle Scholar
  21. 21.
    Cotton, C.J., Skeletal muscle mass and composition during mammalian hibernation, J. Exp. Biol., 2016, vol. 219, pp. 226–234.CrossRefGoogle Scholar
  22. 22.
    Bell, R.A., Smith, J.C., and Storey, K.B., Purification and properties of glyceraldehyde-3-phosphate dehydrogenase from the skeletal muscle of the hibernating ground squirrel, Ictidomys tridecemlineatus, Peer J., 2014, vol. 2. doi 10.7717/peerj.634Google Scholar
  23. 23.
    Hardie, D.G., Hawley, S.A., and Scott, J.W., AMP activated protein kinase development of the energy sensor concept, J. Physiol., 2006, vol. 574, no. 1, pp. 7–15.CrossRefGoogle Scholar
  24. 24.
    Shikhamirova, Z.M., Ismailova, Zh.G., Astaeva, M.D., and Klichkhanov, N.K., Free-radical processes in synaptosomes of the ground squirrel brain during hibernation and awakening, Est. Nauki, Zh. Fund. Prikl. Issled., 2012, vol. 38, no. 1, pp. 213–218.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • R. A. Khalilov
    • 1
  • A. M. Dzhafarova
    • 1
    Email author
  • S. I. Khizrieva
    • 1
  • V. R. Abdullaev
    • 1
  1. 1.Dagestan State UniversityMakhachkalaRussia

Personalised recommendations