Advertisement

Journal of Evolutionary Biochemistry and Physiology

, Volume 54, Issue 5, pp 383–389 | Cite as

The Impact of Temperature Stress on DNA and RNA Synthesis in Potentially Toxic Dinoflagellates Prorocentrum minimum

  • N. A. Knyazev
  • S. A. Pechkovskaya
  • S. O. Skarlato
  • I. V. Telesh
  • N. A. Filatova
Comparative and Ontogenic Physiology

Abstract

Biomarkers of temperature stress were studied as major characteristics crucial for the understanding complex processes that underlie the response of marine planktonic microorganisms to environmental factors and their sublethal effects. Using the potentially toxic dinoflagellates Prorocentrum minimum as a model object, the impact of temperature stress on viability, cell cycle, RNA synthesis and DNA replication in these protists was evaluated. It was shown by flow cytometry that stress evoked by a temperature increase from 25°C (control) to 37 or 42°C during 15 to 60 min did not cause any considerable alterations in the cell cycle, while cell death rate increased from ≤ 1% (control) to 2–12% at 37°C and 4–22% at 42°C. Along with a relatively low cell death rate, following a temperature increase to 37 and/or 42°C, P. minimum displayed the ability to boost the synthesis of DNA (1.7–1.9 and 1.2–1.6 times, respectively) and especially RNA (2.5–3.1 and 1.7–2.8 times, respectively) during the first 15–30 min after stress. At certain stages of the life cycle, this effect can be critical for maintaining the viability and normal development of the P. minimum population. The obtained results demonstrate that a significantly elevated synthesis of nucleic acids can serve as an indicator (biomarker) of sublethal environmental stress.

Key words

dinoflagellates cell cycle temperature stress RNA and DNA synthesis Prorocentrum minimum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Okolodkov, Yu.B., Dinoflagellata, Protisty. Rukovodstvo po zoologii (Protists. Handbook for Zoology), 2011, Moscow, pp. 7–94.Google Scholar
  2. 2.
    Hallegraeff, G.M., A review of harmful algal blooms and their apparent global increase, Phycol., 1993, vol. 32, no. 2, pp. 79–99.CrossRefGoogle Scholar
  3. 3.
    Hackett, J.D., Anderson, D.M., Erdner, D.L., and Bhattacharya, D., Dinoflagellates: a remarkable evolutionary experiment, Am. J. Bot., 2004, vol. 91, pp. 1523–1534.CrossRefGoogle Scholar
  4. 4.
    Telesh, I.V., Schubert, H., and Skarlato, S.O., Ecological niche partitioning of the invasive dinoflagellate Prorocentrum minimum and its native congeners in the Baltic Sea, Harmful Algae, 2016, vol. 59, pp. 100–111.CrossRefGoogle Scholar
  5. 5.
    Skarlato, S.O. and Telesh, I.V., Development of the protistan species-maximum concept for the critical salinity zone, Russ. J. Mar. Biol., 2017, vol. 43, no 1, pp. 1–11.CrossRefGoogle Scholar
  6. 6.
    Orlova, T.Y., Konovalova, G.V., Stonik, I.V., Selina, M.S., Morozova, T.V., and Shevchenko, O.G., Harmful algal blooms on the eastern coast of Russia, PICES Sci. Rep., 2014, vol. 47, pp. 41–58.Google Scholar
  7. 7.
    Wasmund, N., Göbel, J., and Bodungen, B.V., 100-years-changes in the phytoplankton community of Kiel Bight (Baltic Sea), J. Mar. Syst., 2008, vol. 73, pp. 300–322.CrossRefGoogle Scholar
  8. 8.
    Glibert, P.M., Azanza, R., Burford, M., Furuya, K., Abal, E., et al., Ocean urea fertilization for carbon credits poses high ecological risks, Mar. Pollut. Bull., 2008, vol. 56, pp. 1045–1056.CrossRefGoogle Scholar
  9. 9.
    Olenina, I., Wasmund, N., Hajdu, S., Jurgensone, I., Gromisz, S., Kownacka, J., Toming, K., Vaiciute, D., and Olenin, S., Assessing impacts of invasive phytoplankton: The Baltic Sea case, Mar. Pollut. Bull., 2010, vol. 60, pp. 1691–1700.CrossRefGoogle Scholar
  10. 10.
    Hajdu, S., Edler, L., Olenina, I., and Witek, B., Spreading and establishment of the potentially toxic dinoflagellate Prorocentrum minimum in the Baltic Sea, Int. Rev. Hydrobiol., 2000, vol. 85, pp. 561–575.CrossRefGoogle Scholar
  11. 11.
    Hajdu, S., Pertola, S., and Kuosa, H., Prorocentrum minimum (Dinophyceae) in the Baltic Sea: morphology, occurrence–a review, Harmful Algae, 2005, vol. 4, pp. 471–480.CrossRefGoogle Scholar
  12. 12.
    Grzebyk, D. and Berland, B., Influences of temperature, salinity and irradiance on growth of Prorocentrum minimum (Dinophyceae), Mediter. Sea J. Plankton Res., 1996, vol. 18, pp. 1837–1849.CrossRefGoogle Scholar
  13. 13.
    Pertola, S., Kuosa, H., and Olsonen, R., Is the invasion of Prorocentrum minimum (Dinophyceae) related to the nitrogen enrichment of the Baltic Sea? Harmful Algae, 2005, vol. 4, pp. 481–492.CrossRefGoogle Scholar
  14. 14.
    Werner, I., Stephen, L.C., and Hinton, D.E., Biomarkers aid understanding of aquatic organism responses to environmental stressors, Calif. Agr., 2003, vol. 57, no. 4, pp. 110–115.CrossRefGoogle Scholar
  15. 15.
    Rizzo, P.J., The enigma of the dinoflagellate chromosome, J. Protozool., 1991, vol. 38, pp. 246–252.CrossRefGoogle Scholar
  16. 16.
    Moustafa, A., Evans, A.N., Kulis, D.M., Hackett, J.D., Erdner, D.L., Anderson, D.M., and Bhattacharya, D., Transcriptome profiling of a toxic dinoflagellate reveals a gene-rich protist and a potential impact on gene expression due to bacterial presence, PLoS ONE, vol. 5. https://doi.org/10.1371/journal.pone.0009688
  17. 17.
    Skarlato, S., Filatova, N., Knyazev, N., Berdieva, M., and Telesh, I., Salinity stress response of the invasive dinoflagellate Prorocentrum minimum, Estuar. Coast. Shelf Sci., 2017. http://dx.doi.org/10.1016/j.ecss.2017.07.007 Google Scholar
  18. 18.
    Spector, D.L., Dinoflagellate nuclei, Dinoflagellates, Spector, D.L., Ed., Orlando, USA, 1984, pp. 107–147.Google Scholar
  19. 19.
    Hackett, J.D., Scheetz, T.E., Yoon, H.S., Soares, M.B., Bonaldo, M.F., Casavant, T.L., and Bhattacharya, D., Insights into a dinoflagellate genome through expressed sequence tag analysis, BMC Genomics, 2005, vol. 6: e80. https://doi.org/10.1186/1471-2164-6-80.CrossRefGoogle Scholar
  20. 20.
    Lin, S., Genomic understanding of dinoflagellates, Res. Microbiol., 2011, vol. 162, pp. 551–569.CrossRefGoogle Scholar
  21. 21.
    Moreno Diaz de la Espina, S., Alverca, E., Cuadrado, A., and Franca, S., Organization of the genome and gene expression in a nuclear environment lacking histones and nucleosomes: the amazing dinoflagellates, Eur. J. Cell. Biol., 2005, vol. 84, pp. 137–149.CrossRefGoogle Scholar
  22. 22.
    Okamoto, O.K., Robertson, D.L., Fagan, T.F., Hastings, J.W., and Colepicolo, P., Different regulatory mechanisms modulate the expression of a dinoflagellate iron-superoxide dismutase, J. Biol. Chem., 2001, vol. 276, pp. 19989–19993.CrossRefGoogle Scholar
  23. 23.
    Jones, G.D., Ernest, P., Williams, E.P., Place, A.R., Jagus, R., and Tsvetan, R., The alveolate translation initiation factor 4E family reveals a custom toolkit for translational control in core dinoflagellates, BMC Evol. Biol., 2015, vol. 15. e14CrossRefGoogle Scholar
  24. 24.
    Sigee, D.C., Structural DNA and genetically active DNA in dinoflagellate chromosomes, Biosyst., 1984, vol. 16, pp. 203–210.CrossRefGoogle Scholar
  25. 25.
    Soyer, M.O. and Haapala, O.K., Structural changes of dinoflagellate chromosome by pronase and ribonuclease, Chromosoma, 1974, vol. 47, vol. 179–192.Google Scholar
  26. 26.
    Guillard, R.R.L. and Ryther, J.H., Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervaceae (Cleve) Gran, Can. J. Microbiol., 1962, vol. 8, pp. 229–239.CrossRefGoogle Scholar
  27. 27.
    Kester, D.R., Duedall, I.W., Connors, D.N., and Pytkowicz, R.M., Preparation of artificial seawater, Limnol. Oceanogr., 1967, vol.12, pp. 176–179.CrossRefGoogle Scholar
  28. 28.
    Khlebovich, V.V., Acclimation of animal organisms: basic theory and applied aspects, Biol. Bull. Rev., 2017, vol. 7, no. 4, pp. 279–286.CrossRefGoogle Scholar
  29. 29.
    Rosic, N.N., Pernice, M., Dove, S., Dunn, S., and Hoegh-Guldberg, O., Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: possible implications for coral bleaching, Cell Stress Chap., 2011, vol. 16, pp. 69–80.CrossRefGoogle Scholar
  30. 30.
    Schubert, H. and Telesh, I., Estuaries and coastal lagoons, Biological Oceanography of the Baltic Sea, Snoeijs-Leijonmalm, P., Schubert, H., and Radziejewska, T., Eds., Springer Science & Business Media Dordrecht, 2017, pp. 483–509.Google Scholar
  31. 31.
    Schubert, H., Telesh, I., Nikinmaa, M., and Skarlato, S., Biological Oceanography of the Baltic Sea, Snoeijs-Leijonmalm, P., Schubert, H., and Radziejewska, T., Eds., Springer Science & Business Media Dordrecht, 2017, pp. 255–278.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • N. A. Knyazev
    • 1
    • 2
  • S. A. Pechkovskaya
    • 1
  • S. O. Skarlato
    • 1
  • I. V. Telesh
    • 1
    • 3
  • N. A. Filatova
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg Academic University–Nanotechnology Research and Education CenterRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Institute of ZoologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations