Advertisement

Defense Responses and Changes in Symbiotic Gut Microflora in the Colorado Potato Beetle Leptinotarsa decemlineata under the Effect of Endophytic Bacteria from the Genus Bacillus

  • A. V. Sorokan
  • G. V. Benkovskaya
  • D. K. Blagova
  • T. I. Maksimova
  • I. V. Maksimov
Comparative and Ontogenic Biochemistry
  • 12 Downloads

Abstract

Phytophagous insects and host plants have a complex of microsymbionts and make up a united co-evolving system with them. Microsymbiotic complexes are actively involved in stress responses of macrosymbionts. We established that a treatment of potato plants with endophytic bacterial strains Bacillus thuringiensis var. thuringiensis-5689, B. th. var. kurstaki-5351, and Bacillus subtilis 26D decreased the survival rate of the plant feeder, Colorado potato beetle Leptinotarsa decemlineata Say. The B. th. strains suppressed phenoloxidase and acetylcholinesterase activities in the beetle hemolymph. An antagonistic relationship was found between endophytic bacteria B. subtilis 26D and beetle symbiotic bacteria from the genera Acinetobacter and Enterobacter, with the former being able to suppress the growth of endophytic colonies. The recombinant B. subtilis strain 26D Cry, containing the B. th. var. kurstaki δ-endotoxin cry1Ia gene, combined the ability of the original B. subtilis 26D strain to suppress the development of beetle symbionts and immune responses with a production of the Cry toxin, thus leading to a high mortality of the phytophage.

Key words

Colorado potato beetle B. thuringiensis B. subtilis Acinetobacter spp. Enterobacter spp. tyrosinase acetylcholinesterase catecholamines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zakharov, I.A., Intracellular symbionts as a factor of insect evolution, Biol. Bull. Rev., 2015, vol. 5, pp. 99–108. doi: 10.1134/S2079086415020115CrossRefGoogle Scholar
  2. 2.
    Janson, E.M., Stireman, J.O., Singer, M.S., and Abbot, P., Phytophagous insect-microbe mutualism and adaptive evolutionary diversification, Evolution, 2008, vol. 62, no. 5, pp. 997–1012.CrossRefPubMedGoogle Scholar
  3. 3.
    Maksimov, I.V., Sorokan, A.V., Nafikova, A.R., and Benkovskaya, G.V., The combined use of Bacillus subtilis 26D and hyphomycete Beauveria bassiana Ufa-2 on potato plants reduces the damage caused by late blight and the survival rate of the Colorado potato beetle, Mikol. Fitopatol., 2015, vol. 49, no. 5, pp. 317–324.Google Scholar
  4. 4.
    Krawczyk, K., Szymanczyk, M., and Obrepalska-Steplowska, A., Prevalence of endosymbionts in polish populations of Leptinotarsa decemlineata, J. Insect Sci., 2015, vol. 15, pp. 1–6. doi: 10.1093/jisesa/iev085CrossRefGoogle Scholar
  5. 5.
    Muratoglu H., Demirbag Z., and Sezen, K., The first investigation of the diversity of bacteria associated with Leptinotarsa decemlineata (Coleoptera: Chrysomelidae), Biologia, 2011, vol. 66, pp. 288–293.CrossRefGoogle Scholar
  6. 6.
    Chung, S.H., Rosa, C., Scully, E.D., Peiffer, M., Tooker, J.F., Hoover, K., Luthe, D.S., and Felton, G.W., Herbivore exploits orally secreted bacteria to suppress plant defenses, Proc. Natl. Acad. Sci. USA, 2013, vol. 110, no. 39, pp. 15 728–15 733.CrossRefGoogle Scholar
  7. 7.
    Benkovskaya, G.V., Ecological and physiological features and polymorphism of Colorado potato beetle imagoes in Bashkortostan, Nauch. Ved. BelGU, Ser. Est. Nauki, 2009, no. 3(58), iss. 8, pp. 59–67.Google Scholar
  8. 8.
    Dubovsky, I.M., Benkovskaya, G.V., Yaroslavtseva, O.N., Kryukov, V.Yu., and Glupov, V.V., An increase in the immune system activity of the wax moth Galleria mellonella and the Colorado potato beetle Leptinotarsa decemlineata under the effect of organophosphorus insecticide, J. Evol. Biochem. Physiol., 2013, vol. 49, no. 6, pp. 592–596.CrossRefGoogle Scholar
  9. 9.
    Hardoim, P.R., van Overbeek, L.S., Berg, G., Pirttilä, A.M., Compant, S., Campisano, A., Döring, M., and Sessitsch, A., The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes, Microbiol. Mol. Biol. Rev., 2015, vol. 79, no. 3, pp. 293–320.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Araújo, É.O., Rizobacteria in the control of pest insects in agriculture, African. J. Plant Sci., 2015, vol. 9, no. 9, pp. 368–373.CrossRefGoogle Scholar
  11. 11.
    Prabhukarthikeyan, R., Saravanakumar, D., and Raguchander, T., Combination of endophytic Bacillus and Beauveria for the management of Fusarium wilt and fruit borer in tomato, Pest. Manag. Sci., 2014, vol. 70, pp. 1742–1750.CrossRefPubMedGoogle Scholar
  12. 12.
    Tao, A., Panga, F., Huang, S., Yu, G., Li, B., and Wang, T., Characterization of endophytic Bacillus thuringiensis strains isolated from wheat plants as biocontrol agents against wheat flag smut, Biocontrol. Sci. Techn., 2014, vol. 24, pp. 901–924.CrossRefGoogle Scholar
  13. 13.
    Tabashnik, B.E., Tips for battling billion dollar bettles, Science, 2016, vol. 354 (6312), pp. 552–553.CrossRefPubMedGoogle Scholar
  14. 14.
    Sorokan, A.V., Benkovskaya, G.V., and Maksimov, I.V., The influence of potato endophytes on Leptinotarsa decemlineata endosymbionts promotes mortality of the pest, J. Invertebr. Pathol., 2016, vol. 136, pp. 65–67.CrossRefPubMedGoogle Scholar
  15. 15.
    Blagova, D.K., Burkhanova, G.F., Khairullin, R.M., and Maksimov, I.V., Recombinant Bacillus subtilis 26D?ry with fungistatic and insecticidal activities, Int. Conf. “Genetics and Biotechnology in XXI Century: Problems, Achievements, Prospects”, Minsk, 2015, p. 184.Google Scholar
  16. 16.
    Netrusov, A.I., Egorova, M.A., and Zakharchuk, L.M., Praktikum po mikrobiologii (Practical Work on Microbiology), Moscow, 2005.Google Scholar
  17. 17.
    Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J., 16S Ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 1991, vol. 173(2), pp. 697–703.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Benkovskaya, G.V. and Mustafina, R.S., Effect of light regime on biochemical parameters of development of stress-reactions of Musca domestica L. strains with different lifespan, J. Evol. Biochem. Physiol., 2012, vol. 48, nos. 5–6, pp. 493–499.CrossRefGoogle Scholar
  19. 19.
    Viktorov, A.G., Can efficient insecticidal plants be created or the evolution of phytophage resistance to commercial transgenic Bt-Plants, Russ. J. Plant Physiol., 2015, vol. 62, no. 1, pp. 14–22.CrossRefGoogle Scholar
  20. 20.
    Krishnan, N., Kodrík, D., Turanli, F., and Sehnal, F., Stage-specific distribution of oxidative radicals and antioxidant enzymes in the midgut of Leptinotarsa decemlineata, J. Insect. Physiol., 2007, vol. 53, no. 1, pp. 67–74.CrossRefPubMedGoogle Scholar
  21. 21.
    Niu, Q., Zhang, L., Zhang, K., Huang, X., Hui, F., Kan, Y., and Yao, L., Changes in intestinal microflora of Caenorhabditis elegans following Bacillus nematocida B16 infection, Sci. Rep., 2016, vol. 6. Article ID20178. doi: 10.1038/srep20178Google Scholar
  22. 22.
    Moryl, M., Spetana, M., and Dziubek, K., Antimicrobial, antiadhesive and antibiofilm potential of lipopeptides synthesised by Bacillus subtilis, on uropathogenic bacteria, Acta Biochim. Polonica, 2015, vol. 62, no. 4, pp. 725–735.CrossRefGoogle Scholar
  23. 23.
    Ramachandran, R., Chalasani, A.G., Lal, R., and Roy, U., A broad-spectrum antimicrobial activity of Bacillus subtilis RLID 12.1, Sci. World J., 2014. Article ID968487, 10 p., doi: 10.1155/2014/968487Google Scholar
  24. 24.
    Sorokan, A.V., Burkhanova, G.F., and Maksimov, I.V., Endophytic bacteria Bacillus subtilis 26D reduce late blight of potato by stimulating transcription activity of jasmonate-dependent genes, All-Russia Conf. “Fundamental and Applied Problems of Modern Experimental Plant Biology”, Moscow, 2015, pp. 626–629.Google Scholar
  25. 25.
    Tay, W.T., Mahon, R.J., Heckel, D.G., Walsh, T.K., Downes, S., James, W.J., Lee, S.F., Reineke, A., Williams, A.K., and Gordon, K.H., Insect resistance to Bacillus thuringiensis toxin Cry2Ab is conferred by mutations in an ABC transporter subfamily A protein, PLoS Genet., 2015, vol. 11, no. 11. Article IDe1005534. doi: 10.1371/journal.pgen.1005534. eCollection 2015 NovGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Sorokan
    • 1
  • G. V. Benkovskaya
    • 1
  • D. K. Blagova
    • 1
  • T. I. Maksimova
    • 1
  • I. V. Maksimov
    • 1
  1. 1.Institute of Biochemistry and Genetics, Ufa Scientific CentreRussian Academy of SciencesUfaRussia

Personalised recommendations