Influence of the White Sea sponge Halichondria panicea (Pallas, 1766) on physiological state of the blue mussel Mytilus edulis (Linnaeus, 1758), as evaluated by heart rate characteristics

  • V. V. Khalaman
  • A. N. Sharov
  • S. V. Kholodkevich
  • A. Yu. Komendantov
  • T. V. Kuznetsova
Comparative and Ontogenic Physiology
  • 27 Downloads

Abstract

During laboratory testing it was shown that the presence of the White Sea sponge Halichondria panicea on the shell of the mussel Mytilus edulis negatively affects the functional state of the mollusk as expressed in the increased heart rate recovery time after functional test loads (a 50% water salinity drop for 1 hour). It was found that the degree of this negative influence rises with an increase both in the projective cover of mussel shells by the sponge and in the size/age parameters of mussels.

Key words

Halichondria panicea Mytilus edulis heart rate functional state interspecies relationships the White Sea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jackson, J.B.C. and Hughes, T.P., Adaptive strategies of coral-reef invertebrates, American Scientist, 1985, vol. 73, pp. 265–274.Google Scholar
  2. 2.
    Grintsov, V.A. and Poltarukha, O.P., Functional groups of species in the architecture of fouling communities, Okeanol., 2004, vol. 44, pp. 583–588.Google Scholar
  3. 3.
    Edwards, K. and Stachowicz, J.J., Multivariate trade-offs, succession, and phenological differentiation in a guild of colonial invertebrates, Ecology, 2010, vol. 91, pp. 3146–3152.CrossRefPubMedGoogle Scholar
  4. 4.
    Khalaman, V.V., Life strategies of marine sessile organisms as an approach for exploration of structure and succession of fouling communities, Biofouling: Types, Impact and Anti-Fouling, Chan, J. and Wong, Sh., Eds., New York, 2010, pp. 1–33.Google Scholar
  5. 5.
    Becerro, M.A., Turon, X., and Uriz, M.J., Multiple functions for secondary metabolites in encrusting marine invertebrates, J. Chem. Ecol., 1997, vol. 23, pp. 1527–1547.CrossRefGoogle Scholar
  6. 6.
    Duckworth, A.R. and Battershill, C.N., Population dynamics and chemical ecology of New Zealand Demospongiae Latrunculia sp. nov. and Polymastia croceus (Poecilosclerida: Latrunculiidae: Polymastiidae), New Zealand J. Mar. Fresh. Res., 2001, vol. 35, pp. 935–949.CrossRefGoogle Scholar
  7. 7.
    Erpenbeck, D., Knowlton, A.L., Talbot, S.L., Highsmith, R.C., and van Soest, R.W.M., A molecular comparison of Alaskan and North East Atlantic Halichondria panicea (Pallas 1766) (Porifera: Demospongiae) populations, Boll. Mus. Ist. Biol. Univ. Genova, 2004, vol. 68, pp. 319–325.Google Scholar
  8. 8.
    Purushottama, G.B., Venkateshvaran, K., Pani Prasad, K., and Nalini, P., Bioactivities of extracts from the marine sponge Halichondria panicea, J. Venom Anim. Toxins Incl. Trop. Dis., 2009, vol. 15, pp. 444–459.CrossRefGoogle Scholar
  9. 9.
    Plotkin, A.S., Railkin, A.I., Gerasimova, E.I., Pimenov, A.Yu., and Sipenkova, T.M., Underwater rock communities in the White Sea sublittoral: the structure and interaction with near-bottom current, Biol. Morya, 2005, vol. 31, no. 6, pp. 398–405.Google Scholar
  10. 10.
    Khalaman, V.V. and Komendantov, A.Yu., Structure of Halichondria panicea (Porifera: Demospongiae) fouling communities in the White Sea, Ekologiya, 2011, no. 6, pp. 449–458.Google Scholar
  11. 11.
    Thomassen, S. and Riisgård, H.U., Growth and energetics of the sponge Halichondria panicea, Mar. Ecol. Prog. Ser., 1995, vol. 128, pp. 239–246.CrossRefGoogle Scholar
  12. 12.
    Barthel, D. and Wolfrath, R., Tissue sloughing in the sponge Halichondria panicea a fouling organism prevents being fouled, Oecologia, 1989, vol. 78, pp. 357–360.CrossRefPubMedGoogle Scholar
  13. 13.
    Knowlton, A.L. and Highsmith, R.C., Convergence in the space–time continuum: a predator–prey interaction, Mar. Eco.l Prog. Ser., 2000, vol. 197, pp. 285–291.CrossRefGoogle Scholar
  14. 14.
    Khalaman, V.V., Belyaeva, D.V., and Flyachinskaya, L.P., Influence of excretory–secretory products of some fouling animals on the settling and metamorphosis of Styela rustica (Ascidiae) larvae, Biol. Morya, 2008, vol. 34, no. 3, pp. 200–204.Google Scholar
  15. 15.
    Khalaman, V.V., Flyachinskaya, L.P., and Lezin, P.A., Influence of excretory and secretory products of some fouling animals on the settling of Mytilus edulis L. (Bivalvia: Molluska) Larvae, Zool. Bespozvon., 2009, vol. 6, no. 1, pp. 65–72.Google Scholar
  16. 16.
    Khalaman, V.V., Korchagina, N.M., and Komendantov, A.Yu., Effect of substances excreted to the environment by individuals of the same and foreign species on the larvae of Halichondria panicea Pallas, 1766 (Porifera: Demospongiae), Biol. Morya, 2014, vol. 40, no. 1, pp. 38–45.Google Scholar
  17. 17.
    Dyrynda, P.E.J., Modular sessile invertebrates contain larvatoxic allelochemicals, Develop. Compar. Immun., 1983, vol. 7, pp. 621–624.CrossRefGoogle Scholar
  18. 18.
    Althoff, K., Schutt, C., Steffen, R., et al., Evidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: harbor also for putatively toxic bacteria? Mar. Biol., 1998, vol. 130, pp. 529–536.CrossRefGoogle Scholar
  19. 19.
    Khalaman, V.V. and Komendantov, A.Yu., Experimental study of the ability of the sponge Halichondria panicea (Porifera: Demospongiae) to compete for a substrate in shallow water fouling communities of the White Sea, Izv. RAN, ser. Biol., 2016, no. 1, pp. 81–87.Google Scholar
  20. 20.
    Skidchenko, V.S., Vysotskaya, R.U., Krupnova, M.Yu., and Khalaman, V.V., Effect of excretory–secretory products of some White Sea fouling organisms on biochemical parameters of the edible mussel Mytilus edulis L. (Molluska: Bivalvia), Izv. RAN, ser. Biol., 2011, no. 6, pp. 670–683.Google Scholar
  21. 21.
    Kholodkevich, S.V., Kuznetsova, T.V., Trusevich, V.V., Kurakin, A.S., and Ivanov, A.V., Peculiarities of valve movement and cardiac activity of the bivalve mollusks at various stress actions, Zh. Evol. Biokhim. Fiziol., 2009, vol. 45, no. 4, pp. 432–434.PubMedGoogle Scholar
  22. 22.
    Kholodkevich, S.V., Sharov, A.N., and Kuznetsova, T.V., Prospects and problems of using bioelectronic systems in monitoring of the state of ecological safety in the water area of the Finnish Gulf, Regional. Ekol., 2015, vol. 37, no. 2, pp. 16–26.Google Scholar
  23. 23.
    Kholodkevich, S. and Kuznetsova, T.V., In situ measurements of cardiac activity characteristics in indigenous macrobenthic invertebrates for water quality bioindication, Baltic International Symposium (BALTIC), 2014 IEEE/OES, pp. 1–7.Google Scholar
  24. 24.
    Kuznetsova, T.V., Change of salinity of medium as a functional loading in estimating physiological state of the crayfish Astacus leptodactylus, J. Evol. Biochem. Physiol., 2013, vol. 49(5), pp. 498–502.CrossRefGoogle Scholar
  25. 25.
    Filippov, A.A., Adaptive capacities of adult individual of the White Sea mussel Mytilus edulis (Bivalvia, Mytilidae) for changes in water salinity, Zool. Zh., 2007, vol. 86, pp. 415–420.Google Scholar
  26. 26.
    Fedotov, V.P., Kholodkevich, S.V., and Strochilo, A.G., A study of contractile activity of the crayfish heart using a new noninvasive method, Zh. Evol. Biokhim. Fiziol., 2000, vol. 36, no. 3, pp. 219–222.PubMedGoogle Scholar
  27. 27.
    Kholodkevich, S.V., Ivanov, A.V., Kurakin, A.S., Kornienko, E.L., and Fedotov, V.P., Real time biomonitoring of surface water toxicity level at water supply stations, J. Environ. Bioindic., 2008 vol. 3 (1), pp. 23–34.Google Scholar
  28. 28.
    Kuznetsova, T. and Kholodkevich, S., Comparative assessment of surface water quality through evaluation of physiological state of bioindicator species: searching for new biomarkers, Proc. 2015 4th Mediter. Conf. Embed. Comput., MECO, IEEE conference publications, Budva, Montenegro, 2015, pp. 339–344.Google Scholar
  29. 29.
    Anokhin, P.K., Ocherki po Fiziologii Funktsionalnykh Sistem (Essays on the Physiology of Functional Systems), Moscow, 1972.Google Scholar
  30. 30.
    Baevsky, R.M. and Berseneva, A.M., Otsenka adaptatsionnykh vozmozhnostei organizma i Risk Razvitiya Zabolevaniy (Evaluation of Adaptive Capacity of the Organism and Risk of Disease), Moscow, 1997.Google Scholar
  31. 31.
    Bamber, S.D. and Depledge, M.H., Evaluation of changes in the adaptive physiology of shore crabs (Carcinus maenas) as an indicator of pollution in estuarine environments, Mar. Biol., 1997, vol. 129, pp. 667–672.CrossRefGoogle Scholar
  32. 32.
    Frolov, V.M., Urovni funktsionirovaniya fiziologicheskikh system i metody ikh opredeleniya (Functional Levels of Physiological Systems and Methods of Their Identification), Leningrad, 1972.Google Scholar
  33. 33.
    Turja, R., Höher, N., Snoeijs, P., Baršienė, J., Butrimavičienė, L., Kuznetsova, T., Kholodkevich, S.V., Devier, M.-H., Budzinski, H., and Lehtonen, K.K., A multibiomarker approach to the assessment of pollution impacts in two Baltic Sea coastal areas in Sweden using caged mussels (Mytilus trossulus), Sci. Total Environ., 2014, vol. 473–474, pp. 398–409.CrossRefPubMedGoogle Scholar
  34. 34.
    Lauer, T.E. and Spacie, A., Space as a limiting resource in freshwater systems: competition between zebra mussels (Dreissena polymorpha) and freshwater sponges (Porifera), Hydrobiol., 2004, vol. 517, pp. 137–145.CrossRefGoogle Scholar
  35. 35.
    Lancioni, T. and Gaino, E., Competition between the freshwater sponge Ephydatia fluviatilis and the zebra mussel Dreissena polymorpha in Lake Trasimeno (central Italy), Ital. J. Zool., 2005, vol. 72, pp. 27–32.CrossRefGoogle Scholar
  36. 36.
    Barnes, B.B., Luckenbach, M.W., and Kingsley-Smith, P.R., Oyster reef community interactions: The effect of resident fauna on oyster (Crassostrea spp.) larval recruitment, J. Exp. Mar. Biol. Ecol., 2010, vol. 391, pp. 169–177.CrossRefGoogle Scholar
  37. 37.
    Laudien, J. and Wahl, M., Associational resistance of fouled blue mussels (Mytilus edulis) against starfish (Asterias rubens) predation: relative importance of structural and chemical properties of the epibionts, Helgoland Mar. Res., 2004, vol. 58, pp. 162–167.CrossRefGoogle Scholar
  38. 38.
    Marin, A. and Belluga, M.D.L., Sponge coating decreases predation on the bivalve Arca noae, J. Moll. Stud., 2005, vol. 71, pp. 1–6.CrossRefGoogle Scholar
  39. 39.
    Sukhotin, A.A., Abele, D., and Pörtner, H.-O., Growth, metabolism and lipid peroxidation in Mytilus edulis: age and size effects, Mar. Ecol. Prog. Ser., 2002, vol. 226, pp. 223–234.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Khalaman
    • 1
  • A. N. Sharov
    • 2
  • S. V. Kholodkevich
    • 2
    • 3
  • A. Yu. Komendantov
    • 1
  • T. V. Kuznetsova
    • 2
  1. 1.White Sea Biological Station, Zoological InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg Scientific Research Center for Ecological SafetyRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Institute of Earth SciencesSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations