Comparative properties of sensitive to GABAA-ergic ligands Cl, HCO3 -activated Mg2+-ATPase from brain plasma membranes of fish and rats

  • S. A. Menzikov
  • O. V. Menzikova
Comparative and Ontogenic Biochemistry

Abstract

Action of Cl + HCO3 −1 ions on Mg2+-ATPase from brain plasma membranes of fish and rats has been studied. Maximal effect of the anions on the “basal” Mg2+-ATPase activity is revealed in the presence of 10 mM Cl and 3 mM HCO3 −1 at physiological values of pH of incubation medium. The studied Cl, HCO3 -activated Mg2+-ATPases of both animal species, by their sensitivity to SH-reagents (5,5-dithio-bis-nitrobenzoic acid, N-ethylmaleimide), oligomycin, and orthovanadate, are similar to transport ATPase of the P-type, but differ from them by molecular properties and by sensitivity to ligands of GABAA-receptors. It has been established that the sensitive to GABAA-ergic ligands, Cl, HCO3 -activated Mg2+-ATPase from brain of the both animal species is protein of molecular mass around 300 kDa and of Stock’s radius 5.4 nm. In fish the enzyme is composed of one major unit of molecular mass approximately 56 kDa, while in rats-of three subunits of molecular masses about 57, 53, and 45 kDa. A functional and structural coupling of the ATP-hydrolyzing areas of the studied enzyme to sites of binding of GABAA-receptor ligands is suggested.

Key words

HCO3-activated Mg2+-ATPase plasma membrane brain rat carp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gerencser, G.A., The Chloride Pump—A Cl-Translocating P-Type ATPase, Critical Rev. Biochem. Mol. Biol., 1996, vol. 31, pp. 303–307.Google Scholar
  2. 2.
    Inagaki, C., Hara, M., and Zeng, X.T., A Cl-Pump in Rat-Brain Neurons, J. Exp. Zool., 1996, vol. 275, no. 4, pp. 262–268.PubMedCrossRefGoogle Scholar
  3. 3.
    Menzikov, S.A. and Menzikova, O.V., Effect of γ-Aminobutyric Acid on Mg2+-ATPase of Brain Microsomes of the Fish (Abramis brama L.), Ukr. Biokhim. Zh., 1999, vol. 71, no. 1, pp. 109–111.PubMedGoogle Scholar
  4. 4.
    Menzikov, S.A. and Menzikova, O.V., Effect of GABAA-ergic Substances on the Anion-Sensitive Mg2+-ATPase from the Bream (Abramis brama L.) Brain, Biokhimiya, 2000, vol. 65, no. 5, pp. 122–126.Google Scholar
  5. 5.
    Menzikov, S.A. and Menzikova, O.V., Properties of Cl-Stimulated and Sensitive to Inhibitory Receptor Ligands Mg2+-ATPase in Plasma Membranes of the Abramis brama Brain, Zh. Evol. Biokhim. Fiziol., 2004, vol. 40, pp. 319–324.PubMedGoogle Scholar
  6. 6.
    Menzikov, S.A. and Menzikova, O.V., Effect of Chlorine and Bicarbonate Ions on the Sensitive to Inhibitory Receptors Ligands Mg2+-ATPase of Plasma Membranes of the Bream (Abramis brama L.) Brain, Dokl. Ross. Akad. Nauk, 2002, vol. 382, pp. 833–835.Google Scholar
  7. 7.
    Chen, P.S., Toribara, T.Y., and Warner, H., Microdetermination of Phosphorus, Anal. Biochem., 1956, vol. 28, pp. 1756–1758.Google Scholar
  8. 8.
    Bradford, M.M., A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.PubMedCrossRefGoogle Scholar
  9. 9.
    Osterman, L.A., Khromatografiya belkov i nukleinovykh kislot (Chromatography of Proteins and Nucleic Acids), Moscow, 1985.Google Scholar
  10. 10.
    Laemmli, U.K., Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage, Nature, 1970, vol. 227, pp. 680–685.PubMedCrossRefGoogle Scholar
  11. 11.
    Nickolls, G.G., Martin, A.R., Wallas, B.G., and Fox, P.A., Otneironak mozgu (From Neuron to the Brain), Moscow, 2003.Google Scholar
  12. 12.
    Golovko, A.I., Buryakova, L.V., Kutsenko, S.A., and Sviderskii, O.A., Molecular Aspects of the Functional Heterogeneity of GABA-Receptors, Usp. Fiziol. Nauk, 1999, vol. 30, pp. 29–37.PubMedGoogle Scholar
  13. 13.
    Bormann, J., Hamill, O.P., and Sakmann, B., Mechanism of Anion Permeation through Channels Gated by Glycine and Aminobutyric Acid in Mouse Cultured Spinal Neurons, J. Physiol. (London), 1987, vol. 385, pp. 243–286.Google Scholar
  14. 14.
    Staley, K.J., Soldo, B.L., and Proctor, W.R., Ionic Mechanisms of Neuronal Excitation by Inhibitory GABAA Receptors, Science, 1995, vol. 269, pp. 977–981.PubMedCrossRefGoogle Scholar
  15. 15.
    Tanaka, T., Inagaki, C., Matsuda, K., and Takaoris, S., Characteristics of Ethacrynic Acid Highly Sensitive Mg2+-ATPase in Microsomal Fractions of the Rat Brain: Functional Molecular Size, Inhibition by SITS and Stimulation by Cl, J. Pharmacol., 1986, vol. 42, pp. 351–359.CrossRefGoogle Scholar
  16. 16.
    Inagaki, C., Tanaka, T., Hara, M., and Ishiko, J., Novel Microsomal Anionsensitive Mg2+-ATPase Activity in Rat Brain, Biochem. Pharmacol., 1985, vol. 34, pp. 1705–1712.PubMedCrossRefGoogle Scholar
  17. 17.
    Stekhoven, F.S. and Bonting, S.L., Transport Adenosine Triphosphatases: Properties and Functions, Physiol. Reviews, 1981, vol. 61, pp. 1–76.Google Scholar
  18. 18.
    Gerencser, G. and Zhang, J., The Aplysia californica Cl Pump Is a P-Type ATPase: Evidence through Inhibition Studies, Can. J. Physiol. Pharmacol., 2001, vol. 79, pp. 367–370.PubMedCrossRefGoogle Scholar
  19. 19.
    Menzikov, S.A. and Menzikova, O.V., Interaction of Pentobarbital with GABA Ergic Drugs Acting on the Cl-ATPase Activity of the Plasma Membranes from Bream Brain, Neurosci. Lett., 2002, vol. 334, pp. 161–164.PubMedCrossRefGoogle Scholar
  20. 20.
    Zeng, X.T., Hara, M., and Inagaki, C., Electrogenic and Phosphatidylinositol-4-monophosphate-Stimulated Cl Transport by Cl Pump in the Rat Brain, Brain Res., 1994, vol. 641, pp. 167–170.PubMedCrossRefGoogle Scholar
  21. 21.
    Gennis, R., Biomembrany: molekulyarnaya struktura i funktsii (Biomembranes: Molecular Structure and Functions), Moscow, 1997.Google Scholar
  22. 22.
    Kuhlbrandt, W., Auer, M., and Scarborough, G.A., Structure of the P-Type ATPases, Curr. Opin. Struct. Biol., 1998, vol. 8, pp. 510–516.PubMedCrossRefGoogle Scholar
  23. 23.
    Blanco, G. and Mercer, R.W., Isozymes of the Na,K-ATPase: Heterogeneity in STructure, Diversity in Function, Intern. Immunol., 1998, vol. 275, pp. 633–650.Google Scholar
  24. 24.
    Gerencser, G.A. and Zelezna, B., Reaction Sequence and Molecular Mass of a Cl-Translocating P-Type ATPase, Proc. Natl Acad. Sci. USA, 1993, vol. 90, pp. 7970–7974.PubMedCrossRefGoogle Scholar
  25. 25.
    Zeng, X.T., Higashida, T., Hara, M., Hattori, N., Kitagawa, K., Omori, K., and Inagaki, C., Antiserum against Cl-Pump Complex Recognizes 51 kDa Protein, a Possible Catalytic Unit in the Rat Brain, Neurosci. Lett., 1998, vol. 258, pp. 85–88.PubMedCrossRefGoogle Scholar
  26. 26.
    Mamalaki, C., Barnard, E.A., and Stephenson, F.A., Molecular Size of the γ-Aminobutyric AcidA Receptor Purified from Mammalian Cerebral Cortex, J. Neurochem., 1989, vol. 52, no. 1, pp. 124–134.PubMedCrossRefGoogle Scholar
  27. 27.
    Deng, L., Nielsen, M., and Olsen, R.W., Pharmacological and Biochemical Properties of the Gamma-Aminobutyric Acid/Benzodiazepine Receptor Protein from Codfish Brain, J. Neurochem., 1991, vol. 56, pp. 968–977.PubMedCrossRefGoogle Scholar
  28. 28.
    Stelzer, A., Kay, A.R., and Wong, R.K.S., GABAA-Receptor Function in Hippocampal Cells Is Maintained by Phosphorylation Factors, Science, 1988, vol. 241, pp. 339–341.PubMedCrossRefGoogle Scholar
  29. 29.
    Moss, S.J., Gorrie, G.H., Amato, A., and Smart, T.G., Modulation of GABAA Receptors by Tyrosine Phosphorylation, Nature, 1995, vol. 377, pp. 344–348.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • S. A. Menzikov
    • 1
  • O. V. Menzikova
    • 1
  1. 1.Research Institute of General Pathology and Pathological PhysiologyRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations