Advertisement

Journal of Applied Mechanics and Technical Physics

, Volume 59, Issue 6, pp 1145–1149 | Cite as

Basic Test Rig for Studying Oscillating Fluid Flows

  • A. M. Sorokin
  • A. V. Boiko
  • A. A. Tulupov
  • A. P. Chupakhin
Article
  • 8 Downloads

Abstract

A test rig designed for studying oscillating fluid flows in channels is described. The shape of pressure oscillations is defined by displacements of a piston whose motion is controlled by a stepping motor, the minimum step of the piston being 6 μm.

Keywords

oscillating flows channels hemodynamics automated measurement system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Frayne, D. W. Holdsworth, L. M. Gowman, et al., “Computer-Controlled Flow Simulator for MR Flow Studies,” J. Magnet. Resonance Imaging 2 (5), 605–612 (1992).CrossRefGoogle Scholar
  2. 2.
    D. A. Steinman, R. Frayne, X. D. Zhang, et al., “MR Measurement and Numerical Simulation in an End-to-Side Anastomosis of Steady Flow Model,” J. Biomech. 29 (4), 537–542 (1996).CrossRefGoogle Scholar
  3. 3.
    M. L. Thorne, T. L. Poepping, H. N. Nikolov, et al., “In Vitro Doppler Ultrasound Investigation of Turbulence Intensity in Pulsatile Flow with Simulated Cardiac Variability,” Ultrasound Med. Biol. 35 (1), 120–128 (2009).CrossRefGoogle Scholar
  4. 4.
    N. S. Denisenko, A. A. Yanchenko, A. A. Cherevko, et al., “Modeling of Fluid Motion in an Elastic Y-Tube,” in Nonlinear Waves: Theory and New Applications, Abstracts of All-Russian Conference devoted to the 70th anniversary of V. M. Teshukov, Corresponding member of the Russian Academy of Sciences, Novosibirsk, February 29–March 2, 2016 (Lavrentyev Inst. of Hydrodynamics, Sib. Branch, Russian Acad. of Sci., Novosibirsk, 2016), pp. 44–45.Google Scholar
  5. 5.
    A. V. Boiko, A. E. Akulov, A. P. Chupakhin, et al., “Measurement of Viscous Flow Velocity and Flow Visualization by Using Two Magnetic Resonance Imagers,” Prikl. Mekh. Tekh. Fiz. 58 (2), 26–31 (2017) [J. Appl. Mech. Tech. Phys. 58 (2), 209–213 (2017)].Google Scholar
  6. 6.
    A. K. Khe, A. A. Cherevko, A. P. Chupakhin, et al., “Monitoring of Hemodynamics of Brain Vessels,” Prikl. Mekh. Tekh. Fiz. 58 (5), 7–16 (2017) [J. Appl. Mech. Tech. Phys. 58 (5), 763–770 (2017)].MathSciNetGoogle Scholar
  7. 7.
    N. S. Denisenko, A. P. Chupakhin, A. K. Khe, et al., “Experimental Measurements and Visualisation of a Viscous Fluid Flow in Y-Branching Modelling the Common Carotid Artery Bifurcation with MR and Doppler Ultrasound Velocimetry,” J. Phys: Conf. Ser. 722, pp. 012013.1–012013.8 (2016).Google Scholar
  8. 8.
    G. R. Grek, A. V. Boiko, V. M. Gilev, et al., “Automated Control of a Traversing Gear in a Wind Tunnel,” Mezhdunar. Zh. Eksp. Obr., No. 11, 155–156 (2013).Google Scholar
  9. 9.
    A. V. Boiko, V. M. Gilev, G. R. Grek et al., “Development of a Traversing Gear for a Wind Tunnel,” Yuzh.-Sib. Nauch. Vestnik, No. 1, 13–16 (2014).Google Scholar
  10. 10.
    G. R. Grek, A. V. Boiko, V. M. Gilev, et al., “Automated Data Acquisition System for Hot-Wire Information in an Aerophysical Experiment,” Mezhdunar. Zh. Prikl. Fund. Issled., No. 5, 11–14 (2014).Google Scholar
  11. 11.
    A. V. Boiko, G. R. Grek, and D. S. Sboev, “Spectral Analysis of Localized Disturbances in Boundary Layer at Subcritical Reynolds Numbers,” Phys. Fluids 15 (12), 3613–3624 (2003).ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    A. V. Boiko and A. V. Dovgal, “Development of a Stationary Streaky Structure in Laminar Separation Bubble,” Teplofiz. Aeromekh. 11 (1), 23–31 (2004) [Thermophys. Aeromech. 11 (1), 23–30 (2004)].Google Scholar
  13. 13.
    A. V. Boiko, A. V. Dovgal, and A. M. Sorokin, “Transient Growth of Stationary Flow Perturbations at Laminar Boundary-Layer Separation,” Teplofiz. Aeromekh. 18 (1), 109–115 (2011) [Thermophys. Aeromech. 18 (1), 101–106 (2011)].Google Scholar
  14. 14.
    A. V. Boiko, A. V. Ivanov, Yu. S. Kachanov, and D. A. Mishchenko, “Investigation of Weakly-Nonlinear Development of Unsteady Gortler Vortices,” Teplofiz. Aeromekh. 17 (4), 487–514 (2010) [Thermophys. Aeromech. 17 (4), 455–481 (2010)].Google Scholar
  15. 15.
    D. S. Lokhov, A. V. Boiko, and D. S. Sboev, “Controlling the Development of Stationary Longitudinal Structures in the Boundary Layer on a Flat Plate Using Riblets,” Prikl. Mekh. Tekh. Fiz. 46 (4), 47–54 (2005) [J. Appl. Mech. Tech. Phys. 46 (4), 496–502 (2005)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. M. Sorokin
    • 1
  • A. V. Boiko
    • 1
    • 2
  • A. A. Tulupov
    • 3
    • 4
  • A. P. Chupakhin
    • 4
    • 5
  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Tyumen’ State UniversityTyumen’Russia
  3. 3.International Tomography Center, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  4. 4.Novosibirsk State UniversityNovosibirskRussia
  5. 5.Lavrentyev Institute of Hydrodynamics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations