Advertisement

Journal of Applied Mechanics and Technical Physics

, Volume 59, Issue 6, pp 1095–1103 | Cite as

Stress Relaxation in Cylindrical Glass-To-Metal Junctions With Account for the Quality of a Junction Region

  • A. A. BureninEmail author
  • O. N. Lyubimova
  • E. P. Solonenko
Article
  • 2 Downloads

Abstract

With account for a complex behavior of glass (the phenomenon of glass transition) and the degree of adhesion between glass and metal layers, a numerical-analytical method for calculating the evolution of a stress state of glass–metal composite during temperature treatment is proposed. The effect of relaxation processes in the glass–metal junction region on the technological and residual stresses in the composite is studied.

Keywords

technological stresses glass transition relaxation processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Pikul, “Effectiveness of Glass–Metal Composite,” Perspekt. Mater., No. 6, 63–65 (2000).Google Scholar
  2. 2.
    V. V. Pikul, V. K. Goncharuk, and I. G. Maslennikova, “A Cylindrical Shell Made of Glass–Metal Composite,” J. Appl. Mater. 756, 230–235 (2015).Google Scholar
  3. 3.
    O. N. Lyubimova, E. A. Gridasova, A. A. Gridasov, et al., “Characterization of Mechanical and Corrosion Properties of Newly Developed Glass–Steel Composites,” J. Mater. Technol. 50 (1), 95–100 (2016).Google Scholar
  4. 4.
    O. V. Mazurin, Annealing of Glass-to-Metal Junctions (Energiya, Leningrad, 1980) [in Russian].Google Scholar
  5. 5.
    N. O. Gonchukova, “Calculation of Stresses in Plasma-Deposited Amorphous Metallic Coatings,” Fiz. Khim. Stekla 29 (3), 435–441 (2003) [Glass Phys. Chem. 29 (3), 310–315 (2003)].Google Scholar
  6. 6.
    T. V. Tropin, J. W. Schmelzer, and V. L. Aksenov, “Modern Aspects of the Kinetic Theory of Glass Transition,” Usp. Fiz. Nauk 186, 47–73 (2016).[Phys. Usp. 59 (1), 42–66 (2016)].CrossRefGoogle Scholar
  7. 7.
    A. Q. Tool, “Relation Between Inelastic Deformability and Thermal Expansion of Glass in Its Annealing Range,” J. Amer. Ceram. Soc. 29 (9), 240–253 (1946).CrossRefGoogle Scholar
  8. 8.
    O. S. Narayanaswamy, “Model of Structural Relaxation in Glass,” J. Amer. Ceram. Soc. 54 (10), 491–498 (1971).CrossRefGoogle Scholar
  9. 9.
    C. T. Moynihan, P. B. Macedo, C. J. Montrose, et al., “Structural Relaxation in Vitreous Materials,” Ann. NY Acad. Sci. 249, 15–35 (1976).ADSCrossRefGoogle Scholar
  10. 10.
    N. N. Malinin, Applied Theory of Plasticity and Creep (Mashinostroenie, Moscow, 1968) [in Russian].Google Scholar
  11. 11.
    A. A. Ilyushin and B. E. Pobedrya, Fundamentals of the Theory of Thermoviscoelasticity (Nauka, Moscow, 1970) [in Russian].Google Scholar
  12. 12.
    V. A. Zhornik and Yu. A. Prokopenko, “Temperature Stresses in Double-Layer Cylinders,” in Science and Technologies, Vol. 1 (Izd. Ross. Akad. Nauk, Moscow, 2008) [in Russian].Google Scholar
  13. 13.
    O. N. Lyubimova, A. V. Morkovkin, and S. A. Dryuk, “Structure of the Glass–Steel Junction Zone in the Technology of Manufacturing Glass–Steel Composites,” Materialovedenie, No. 7, 3–7 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. A. Burenin
    • 1
    • 2
    Email author
  • O. N. Lyubimova
    • 1
  • E. P. Solonenko
    • 1
  1. 1.Far Eastern Federal UniversityVladivostokRussia
  2. 2.Institute of Machine Science and Metallurgy, Far Eastern BranchRussian Academy of SciencesKomsomolsk-on-AmurRussia

Personalised recommendations