Temperature Distribution in the Spherical Shell of a Gauge-Alignment Spacecraft
Article
First Online:
Received:
Revised:
- 16 Downloads
Abstract
A thermal model for the aluminized polymer shell of a gauge-alignment spacecraft was developed to calculate the steady-state temperature distribution of this shell at a fixed orientation to the Sun. A modified version of the model was used to analyze the quasistationary distribution of the shell temperature in the case of its rotation with a constant angular velocity about an axis perpendicular the direction to the Sun.
Keywords
spacecraft spherical shell equilibrium temperature quasistationary temperature distributionPreview
Unable to display preview. Download preview PDF.
References
- 1.Small Information Support Spacecrafts (Radiotekhnika, Moscow, 2010) [in Russian].Google Scholar
- 2.Rockets and Spacecrafts Designed by the Yuzhnoe Design Bureau (Yangel Yuzhnoe State Design Bureau, Dnepropetrovsk, 2000) [in Russian].Google Scholar
- 3.M. V. Tarasenko, Military Aspects of the Soviet Space Program (Nikol’, Moscow, 1992) [in Russian].Google Scholar
- 4.M. A. Komkov, Yu. Z. Bolotin, and T. V. Vasil’eva, “Determination of Structural and Technological Parameters of Pipelines Made by Winding of Polyimide Film,” Nauka Obrazovanie, No. 3, 169–178 (2013); DOI: 10.7463/0313.0541990.Google Scholar
- 5.Spacecraft Thermal Control Handbook, Vol. 1: Fundamental Technologies (Aerospace Press, El Segundo, 2002).Google Scholar
- 6.V. S. Zarubin and G. N. Kuvyrkin, “Mathematical Modeling of Thermomechanical Processes under Intense Thermal Action,” Teplofiz. Vysok. Temp. 41 (2), 300–309 (2003).Google Scholar
- 7.V. N. Zimin, “On the Simulation and Calculation of the Dynamics of Deployment of Deployable Space Structures,” Oboron. Tekh., No. 1, 123–127 (2006).Google Scholar
- 8.V. S. Avduevskii, B. M. Galitseiskii, G. A. Glebov, Yu. I. Danilov, et al., Fundamentals of Heat Transfer in Aviation and Space Engineering (Mashinstroenie, Moscow, 1975) [in Russian].Google Scholar
- 9.R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere, New York, 1992).Google Scholar
- 10.M. A. Komarova, “Temperature Conditions in the Node Housing in an Autonomous Flight to the International Space Station,” Izv. Ross. Akad. Nauk, Energetika, No. 2, 23–30 (2012).Google Scholar
- 11.A. A. Gukalo and A. S. Gribkov, “Temperature Optimization of a Flat and Cruciform Refrigerator Emitter of a Space Nuclear Power Plant with the External Thermal Radiation Taken into Account,” Izv. Ross. Akad. Nauk, Energetika, No. 2, 103–110 (2012).Google Scholar
- 12.“The Degree of Blackness and the Solar Radiation Absorption Coefficients of Aluminum and Alloys,” http://forca.ru/spravka/shiny-i-tokoprovody/stepen-chernoty-i-koefficienty-pogloscheniya-solnechnoy-radiaciialyuminiem-i-splavami.html.Google Scholar
- 13.V. S. Zarubin, “Temperature State of a Thin Spherical Shell,” Prikl. Mekh. Tekh. Fiz., No. 6, 169–171 (1963).Google Scholar
- 14.“Analytical Portal of the Chemical Industry,” http://www.newchemistry.ru/production.phpcat-id=52&catparent= 7&level=3.Google Scholar
Copyright information
© Pleiades Publishing, Ltd. 2017