Advertisement

Approximate modeling of the flow structure in a λ-shaped pseudoshock

  • A. E. Medvedev
Article

Abstract

An approximate analytical model of the flow structure in a plane λ-shaped pseudoshock consisting of a viscous boundary layer and an inviscid core flow is proposed. It is assumed that the boundary layer edge is a streamline with a specified pressure distribution along the channel and that the flow in the pseudoshock consists of an input segment (Mach reflection of an oblique shock wave) and a sequence of internal segments with an identical structure (shock train). Comparisons with experimental data and results of numerical calculations are performed. It is shown that the model provides a sufficiently accurate description of the pseudoshock flow structure.

Keywords

pseudoshock gas dynamics shock waves compression wave expansion wave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aviation: Encycloperida Ed. by G. P. Svishchev (Bolshaya Rossiiskaya Entsiklopediya, Moscow, 1994) [in Russian].Google Scholar
  2. 2.
    A. Weiss, A. Grzona, and H. Olivier, “Behavior of Shock Trains in a Diverging Duct,” Exp. Fluids 49(2), 355–365 (2010).CrossRefGoogle Scholar
  3. 3.
    L. Crocco, “One-Dimensional Treatment of Steady Gas Dynamics,” in High Speed Aerodynamics and Jet Propulsion, Ed. by H. W. Emmons (Princeton University Press, Princeton, 1958).Google Scholar
  4. 4.
    I. Takefumi, M. Kazuyasu, and N. Minoru, “The Mechanism of Pseudo-Shock Waves,” Bull. JSME 17(108), 731–739 (1974).CrossRefGoogle Scholar
  5. 5.
    E. S. Shchetinkov, “Piecewise-0ne-dimensional models of supersonic Combustion and Pseudo-Shock in a Duct,” Fiz. Goreniya Vzryva 9(4), 473–483 (1973) [Combust., Expl., Shock Waves 9 (4), 409–417 (1973)].Google Scholar
  6. 6.
    T. Kanda and K. Tani, “Momentum Balance Model of Flow Field with Pseudo-Shock,” AIAA Paper No. 2005-1045 (2005).Google Scholar
  7. 7.
    T. Kanda and K. Tani, “Momentum Balance Model of Flow Field with Pseudo-Shock,” JAXA Res. Develop. Rep. No. JAXA-RR-06-037E (Japan Aerospace Exploration Agency, Tokyo, 2007).Google Scholar
  8. 8.
    K. Matsuo, Y. Miyazato, and H.-D. Kim, “Shock Train and Pseudo-Shock Phenomena in Internal Gas Flows,” Progr. Aerospace Sci. 35(1), 33–100 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    A. Godbole, “Shock-Assisted Pneumatic Injection Technology,” Ph. D. Dissertation (Wollongong, 1998).Google Scholar
  10. 10.
    A. Godbole, P. Wypych, W. K. Soh, et al., “Pseudo-Shock in Supersonic Injection Feeder,” in Proc. of the 2nd Int. Conf. on CFD in the Minerals and Process Industries CSIRO, Melbourne (Australia), December 6–8, 1999, pp. 107–112.Google Scholar
  11. 11.
    A. F. Latypov, “Entropy Maximum Principle for a Steady Gas Flow in a Channel,” Prikl. Mekh. Tekh. Fiz. 52(3), 68–73 (2011) [Appl. Mech. Tech. Phys. 52 (3), 385–389 (2011)].MathSciNetGoogle Scholar
  12. 12.
    T. Tamaki, Y. Tomita, and R. Yamane, “A Study of Pseudo-Shock: 1st Report, λ-Type Pseudo-Shock,” Bull. JSME 13(55), 51–58 (1970).CrossRefGoogle Scholar
  13. 13.
    T. Tamaki, Y. Tomita, and R. Yamane, “A Study of Pseudo-Shock: 2nd Report, X-Type Pseudo-Shock,” Bull. JSME 14(74), 807–817 (1971).CrossRefGoogle Scholar
  14. 14.
    E. E. Zukoski, “Turbulent Boundary-Layer Separation in Front of a Forward-Facing Step,” AIAA J. 5(10), 1746–1753 (1967).ADSCrossRefGoogle Scholar
  15. 15.
    D. D. Knight and A. A. Zheltovodov, “Ideal-Gas ShockWave-Turbulent Boundary-Layer Interactions (STBLIs) in Supersonic Flows and Their Modeling: Two-Dimensional Interactions,” in Shock Wave-Boundary-Layer Interactions, Chapter 4, Ed. by H. Babinsky and J. Harvey (Cambridge Univ. Press, New York, 2011), pp. 137–201.CrossRefGoogle Scholar
  16. 16.
    O. V. Gus’kov, V. I. Kopchenov, I. I. Lipatov, et al., Processes of Deceleration of Supersonic Flow in Channels (Fizmatlit, Moscow, 2008) [in Russian].Google Scholar
  17. 17.
    A. E. Medvedev and V. M. Fomin, “Approximate analytical Calculation of the Mach Configuration of Steady Shock Waves in a Plane Constricting Channel,” Prikl. Mekh. Tekh. Fiz. 39(3), 52–58 (1998) [Appl. Mech. Tech. Phys. 39 (3), 369–374 (1998)].zbMATHGoogle Scholar
  18. 18.
    A. E. Medvedev and V. M. Fomin, “Approximate Analytical Calculation of the Mach Configuration of Steady Shock Waves in a Plane Constricting Channel,” Teplofiz. Aeromekh. 6(2), 157–164 (1999) [Thermophys. Aeromech. 6 (2), 143–150 (1999)].Google Scholar
  19. 19.
    A. E. Medvedev, “Reflection of an Oblique ShockWave in a Reacting Gas with a Finite Length of the Relaxation Zone,” Prikl. Mekh. Tekh. Fiz. 42(2), 33–41 (2001) [Appl. Mech. Tech. Phys. 42 (2), 211–218 (2001)].zbMATHGoogle Scholar
  20. 20.
    J. Delery, Physical Introduction, Chapter 2, Ed. by H. Babinsky and J. Harvey (Cambridge Univ. Press, New York, 2011), pp. 5–86.Google Scholar
  21. 21.
    C. A. Mouton, “Transition between Regular Reflection and Mach Reflection in the Dual-Solution Domain,” Ph. D. Dissertation (Pasadena, 2007).Google Scholar
  22. 22.
    D. J. Azevedo and C. S. Liu, “Engineering Approach to the Prediction of Shock Patterns in Bounded High-Speed Flows,” AIAA J. 31(1), 83–90 (1993).ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    P. K. Chang, Separation of Flow (Pergamon Press, Oxford, 1970).zbMATHGoogle Scholar
  24. 24.
    L. F. Henderson, “The Reflexion of a Shock Wave at a Rigid Wall in the Presence of a Boundary Layer,” J. Fluid Mech. 30(4), 699–722 (1967).ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    F. F. Tarasov, “Investigations of the Pseudoshock in Long Channels,” Candidate’ Dissertation in Tech. Sci. (Kazan’, 1967).Google Scholar
  26. 26.
    F. Billig, “Research on Supersonic Combustion,” J. Propuls. Power 9(4), 499–514 (1992).CrossRefGoogle Scholar
  27. 27.
    L. Lees and B. L. Reeves, “Supersonic Separated and Reattaching Laminar Flows. 1. General Theory and Application to Adiabatic Boundary-Layer/Shock-Wave Interactions,” AIAA J. 2(11), 1907–1920 (1964).CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    G. I. Petrov, Selected Papers. High-Velocity Aeromechanics and Space Research, Ed. by Yu. V. Chudetskii (Nauka, Moscow, 1992), pp. 146–184 [in Russian].Google Scholar
  29. 29.
    L. G. Loitsyanskii, Mechanics of Liquids and Gases (Nauka, Moscow, 1978; Elsevier, 1966).Google Scholar
  30. 30.
    H. Li and G. Ben-Dor, “A Parametric Study of Mach Reflection in Steady Flows,” J. Fluid Mech. 341, 101–125 (1997).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    J. C. Dutton and D. F. Carroll, “Numerical and Experimental Investigation of Multiple Shock Wave/Turbulent Boundary Layer Interactions in a Rectangular Duct,” Report Univ. Illinois, No. UILU-ENG-88-4001 (Urbana, 1988).Google Scholar
  32. 32.
    B. Carroll and J. Dutton, “An LDV Investigation of a Multiple Shock Wave. Turbulent Boundary Layer Interaction,” AIAA Paper No. 89-0355 (1989).Google Scholar
  33. 33.
    B. Carroll and J. Dutton, “Turbulence Phenomena in Multiple Normal Shock Wave. Turbulent Boundary Layer Interaction,” AIAA J. 30(1), 43–48 (1992).ADSCrossRefGoogle Scholar
  34. 34.
    L. Q. Sun, H. Sugiyama, K. Mizobata, et al., “Numerical and Experimental Investigations on the Mach 2 Pseudo-Shock Wave in a Square Duct,” J. Visual. 6(4), 363–370 (2003).CrossRefGoogle Scholar
  35. 35.
    L. Sun, H. Sugiyama, K. Mizobata, et al., “Numerical and Experimental Investigations on Mach 2 and 4 Pseudo-Shock Waves in a Square Duct,” Trans. Jpn. Soc. Aeronaut. Space Sci. 47(156), 124–130 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations