Skip to main content
Log in

Antiferromagnetic Resonance in a Spin-Gap Magnet with Strong Single-Ion Anisotropy

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Quasi-one-dimensional magnet NiCl2·4SC(NH2)2 denoted as DTN remains disordered in zero magnetic field down to T = 0: the Sz = 0 ground state is separated from Sz =±1 excitations by a gap caused by strong single-ion easy-plane anisotropy acting on the Ni2+ ions. When a magnetic field is applied along the principal axis of anisotropy, the gap closes in a field above Bc1 = 2.18 T and the field-induced antiferromagnetic order arises. There are two excitation branches in this field-induced phase, one of which should be the Goldstone mode. Recent studies of the excitation spectrum in the field-induced ordered phase of the DTN magnet (T. Soldatov et al., Phys. Rev. B 101, 104410 (2020)) have revealed that the Goldstone mode acquires a gap in the excitation spectrum of the field-induced phase at a small deviation of the applied magnetic field from the tetragonal axis of the crystal. In this work, a simple description of both magnetic resonance branches in the ordered phase of a quasi-one-dimensional quantum S = 1 magnet with strong single-ion anisotropy is proposed. This approach is based on a combination of an effective strong coupling model for an anisotropic spin chain and the classical antiferromagnetic resonance theory. This description reproduces the experimental results semi-quantitatively without additional parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Lopez-Castro and M. R. Truter, J. Chem. Soc. 1309 (1963).

  2. V. S. Zapf, D. Zocco, B. R. Hansen, M. Jaime, N. Harrison, C. D. Batista, M. Kenzelmann, C. Niedermayer, A. Lacerda, and A. Paduan-Filho, Phys. Rev. Lett. 96, 077204 (2006).

    Article  ADS  Google Scholar 

  3. A. Paduan-Filho, R. D. Chirico, K. O. Joung, and R. L. Carlin, J. Chem. Phys. 74, 4103 (1981).

    Article  ADS  Google Scholar 

  4. A. Paduan-Filho, X. Gratens, and N. F. Oliveira, Jr., Phys. Rev. B 69, 020405(R) (2004).

    Article  ADS  Google Scholar 

  5. T. Giamarchi, C. Ruegg, and O. Tchernyshyov, Nat. Phys. 4, 198 (2008).

    Article  Google Scholar 

  6. V. Zapf, M. Jaime, and C. D. Batista, Rev. Mod. Phys. 86, 563 (2014).

    Article  ADS  Google Scholar 

  7. S. A. Zvyagin, J. Wosnitza, C. D. Batista, M. Tsukamoto, N. Kawashima, J. Krzystek, V. S. Zapf, M. Jaime, N. F. Oliveira, Jr., and A. Paduan-Filho, Phys. Rev. Lett. 98, 047205 (2007).

    Article  ADS  Google Scholar 

  8. S. A. Zvyagin, J. Wosnitza, A. K. Kolezhuk, V. S. Zapf, M. Jaime, A. Paduan-Filho, V. N. Glazkov, S. S. Sosin, and A. I. Smirnov, Phys. Rev. B 77, 092413 (2008).

    Article  ADS  Google Scholar 

  9. T. A. Soldatov, A. I. Smirnov, K. Yu. Povarov, A. Paduan-Filho, and A. Zheludev, Phys. Rev. B 101, 104410 (2020).

    Article  ADS  Google Scholar 

  10. A. S. Sherbakov and O. I. Utesov, J. Magn. Magn. Mater. 518, 167390 (2021); arXiv:2004.02170 (2020).

    Article  Google Scholar 

  11. N. Papanicolaou and P. Spathis, J. Phys.: Condens. Matter 2, 6575 (1990).

    ADS  Google Scholar 

  12. A. V. Sizanov and A. V. Syromyatnikov, Phys. Rev. B 84, 054445 (2011).

    Article  ADS  Google Scholar 

  13. K. M. Diederix, J. P. Groen, T. O. Klaassen, N. J. Poulis, and R. L. Carlin, Phys. B+C (Amsterdam, Neth.) 97, 113 (1979).

    Article  ADS  Google Scholar 

  14. T. Nagamiya, K. Yosida, and R. Kubo, Adv. Phys. 4, 1 (1955).

    Article  ADS  Google Scholar 

  15. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (CRC, Boca Raton, New York, London, Tokyo, 1996).

    Google Scholar 

  16. V. M. Kalita and V. M. Loktev, JETP Lett. 93, 534 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I am grateful to A.I. Smirnov and T.A. Soldatov (Kapitza Institute for Physical Problems, Russian Academy of Sciences) for numerous fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Glazkov.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 10, pp. 688–692.

Funding

This work was supported by the Russian Science Foundation (project no. 17-12-01505) and by the Presidium of the Russian Academy of Sciences (program “Actual Problems of Low Temperature Physics”).

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glazkov, V.N. Antiferromagnetic Resonance in a Spin-Gap Magnet with Strong Single-Ion Anisotropy. Jetp Lett. 112, 647–650 (2020). https://doi.org/10.1134/S0021364020220099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020220099

Navigation