Advertisement

Metamorphoses of Electron Systems Hosting a Fermion Condensate

  • V. A. KhodelEmail author
  • J. W. Clark
  • M. V. Zverev
Article

Abstract

We present a unified theory of strongly correlated electron systems with a fermion condensate. This theoretical framework facilitates quantitative analysis and explanation, on an equal footing, of (i) non-Fermi-liquid behavior of high-Tc superconductors in which the critical temperature for superconductivity is proportional to the Fermi energy TF and (ii) the so-called quantum electron solid state in the two-dimensional electron liquid of MOSFETs and SiGe/Si/SiGe quantum wells. In this framework, low-temperature chaotic-like behavior that is documented in experimental studies of these systems is attributed to a spontaneous topological rearrangement of the conventional Landau state, quite in contrast to models in which the chaotic element is introduced deliberately in terms of a chaotic distribution of interaction matrix elements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    J. G. Donath, F. Steglich, E. D. Bauer, J. L. Sarrao, and P. Gegenwart, Phys. Rev. Lett. 100, 136401 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    N. Oeschler, P. Gegenwart, M. Lang, R. Movshovich, J. L. Sarrao, J. D. Thompson, and F. Steglich, Phys. Rev. Lett. 91, 076402 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    V. A. Khodel and V.R. Shaginyan, JETP Lett. 51, 553 (1990).ADSGoogle Scholar
  4. 4.
    V. A. Khodel, V. R. Shaginyan, and V. V. Khodel, Phys. Rep. 249(1), 86 (1994).Google Scholar
  5. 5.
    V. A. Khodel and M. V. Zverev, JETP Lett. 85, 404 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    V. A. Khodel, J. W. Clark, and M. V. Zverev, Phys. Rev. B 78, 075120 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    J. W. Clark, M. V. Zverev, and V. A. Khodel, Ann. Phys. 327, 3063 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    V. R. Shaginyan, A. Z. Msezane, K. G. Popov, J. W. Clark, M. V. Zverev, and V. A. Khodel, Phys. Rev. B 86, 085147 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    G. E. Volovik, JETP Lett. 53, 222 (1991).ADSGoogle Scholar
  10. 10.
    P. Nozières, J. Phys. I France 2, 443 (1992).CrossRefGoogle Scholar
  11. 11.
    G. E. Volovik, Springer Lecture Notes in Physics 718, 31 (2007).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    G. E. Volovik, JETP Lett. 59, 830 (1994).ADSGoogle Scholar
  13. 13.
    M. V. Zverev, V. A. Khodel, and M. Baldo, JETP Lett. 72, 126 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    T. T. Heikkilä, N. B. Kopnin, and G. E. Volovik, JETP Lett. 94, 233 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    V. R. Shaginyan, K. G. Popov, and A. Mzezane, Phys. Rev. B 84, 060401(R) (2011).ADSCrossRefGoogle Scholar
  16. 16.
    M. Ya. Amusia, K. G. Popov, V. R. Shaginyan, and V. A. Stephanovich, Theory of heavy-fermion compounds, Springer, Berlin, Germany (2014).Google Scholar
  17. 17.
    V. A. Khodel, J. W. Clark, and M. V. Zverev, Phys. Lett. A 382, 3281 (2018).ADSCrossRefGoogle Scholar
  18. 18.
    G. E. Volovik, JETP Lett. 107, (516) (2018).ADSCrossRefGoogle Scholar
  19. 19.
    V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, V. A. Stephanovich, G. S. Japaridze, and S. A. Artamonov, JETP Lett. 110, 290 (2019).ADSCrossRefGoogle Scholar
  20. 20.
    V. Yu. Irkhin, A. A. Katanin, and M. I. Katsnelson, Phys. Rev. Lett. 89, 076401 (2002).ADSCrossRefGoogle Scholar
  21. 21.
    D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A. I. Lichtenstein, and M. I. Katsnelson, Phys. Rev. Lett. 112, 070403 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    V. A. Khodel, J. Low Temp. Phys. 191, 14 (2018).ADSCrossRefGoogle Scholar
  23. 23.
    P. Brussarski, S. Li, S. V. Kravchenko, A. A. Shashkin, and M. P. Sarachik, Nat. Commun. 9, 3803 (2018).ADSCrossRefGoogle Scholar
  24. 24.
    M. Yu. Mel’nikov, A. A. Shashkin, V. T. Dolgopolov, Amy Y. X. Zhu, S. V. Kravchenko, S.-H. Huang, and C. W. Liu, Phys. Rev. B 99, 081106(R) (2019).ADSCrossRefGoogle Scholar
  25. 25.
    A. A. Shashkin and S. V. Kravchenko, Appl. Sci. 9, 1169 (2019).CrossRefGoogle Scholar
  26. 26.
    A. A. Patel and S. Sachdev, Phys. Rev. Lett. 123, 066601 (2019).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    G. E. Volovik, JETP Lett. 110, 352 (2019).ADSCrossRefGoogle Scholar
  28. 28.
    Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature 556, 80 (2018).ADSCrossRefGoogle Scholar
  29. 29.
    M. Yankovitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Science 363, 1059 (2019).ADSCrossRefGoogle Scholar
  30. 30.
    Y. Cao, D. Chowdhury, D. Rodan-Legrain, O. Rubies-Bigord, K. Watanabe, T. Taniguchi, T. Tenthil, and P. Jarillo-Herrero, arXiv:1901.03710.Google Scholar
  31. 31.
    S. L. Tomarken, Y. Cao, A. Demir, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and R. C. Ashoori, Phys. Rev. Lett. 123, 046601 (2019).ADSCrossRefGoogle Scholar
  32. 32.
    V. Y. Irkhin and Y. N. Skryabin, JETP Lett. 107, 651 (2018).ADSCrossRefGoogle Scholar
  33. 33.
    T. J. Peltonen, R. Ojärvi, and T. T. Heikkilä, Phys. Rev. B 98, 220504(R) (2018).ADSCrossRefGoogle Scholar
  34. 34.
    S. Link, S. Forti, A. Stöohr, K. Kuüster, M. Röosner, D. Hirschmeier, C. Chen, J. Avila, M. C. Asensio, A. A. Zakharov, T. O. Wehling, A. I. Lichtenstein, M. I. Katsnelson, and U. Starke, Phys. Rev. B 100 121407(R) (2019).ADSCrossRefGoogle Scholar
  35. 35.
    P. Esquinazi, JETP Lett. 100, 336 (2014).ADSCrossRefGoogle Scholar
  36. 36.
    G. E. Volovik, JETP Lett. 107, 516 (2018).ADSCrossRefGoogle Scholar
  37. 37.
    Y. Kopelevich, V. V. Lemanov, S. Moehlecke, and J. H. S. Torres, Phys. Solid State 41, 2135 (1999).CrossRefGoogle Scholar
  38. 38.
    T. Scheike, P. Esquinazi, A. Setzer, and W. Böohlmann, Carbon 59, 140 (2013).CrossRefGoogle Scholar
  39. 39.
    I. M. Lifshitz, Sov. Phys. JETP 11, 1130 (1960).Google Scholar
  40. 40.
    L. D. Landau, Sov. Phys. JETP 3, 920 (1957).Google Scholar
  41. 41.
    L. P. Pitaevskii, Sov. Phys. JETP 10, 1267 (1960).Google Scholar
  42. 42.
    P. Nozières, J. Phys. I France 2, 454 (1992).CrossRefGoogle Scholar
  43. 43.
    T. N. Zavaritskaya and E. I. Zavaritskaya, JETP Lett. 45, 609 (1987).ADSGoogle Scholar
  44. 44.
    S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux, V. M. Pudalov, and M. D’Iorio, Phys. Rev. B 50, 8039 (1994).ADSCrossRefGoogle Scholar
  45. 45.
    E. Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev. Mod. Phys. 73, 251 (2001).ADSCrossRefGoogle Scholar
  46. 46.
    A. A. Shashkin, Phys. Usp. 48, 129 (2005).ADSCrossRefGoogle Scholar
  47. 47.
    A. Mokashi, S. Li, B. Wen, S. V. Kravchenko, A. A. Shashkin, V. T. Dolgopolov, and M. P. Sarachik, Phys. Rev. Lett. 109, 096405 (2012).ADSCrossRefGoogle Scholar
  48. 48.
    A. Punnoose, A. M. Finkel’stein, Phys. Rev. Lett. 88, 016802 (2002).ADSCrossRefGoogle Scholar
  49. 49.
    A. Punnoose and A. M. Finkel’stein, Science 310, 289 (2005).ADSCrossRefGoogle Scholar
  50. 50.
    A. Kaminski, T. Kondo, T. Takeuchi, and G. Gu, Philos. Mag. 95, 453 (2015).ADSCrossRefGoogle Scholar
  51. 51.
    V. A. Khodel, J. W. Clark, and M. V. Zverev, JETP Lett. 108, 260 (2018).ADSCrossRefGoogle Scholar
  52. 52.
    T. Uemura, J. Phys. Condens. Matter 16, S4515 (2004).ADSCrossRefGoogle Scholar
  53. 53.
    R. A. Cooper, Y. Wang, B. Vignolle, O. J. Lipscombe, S. M. Hayden, Y. Tanabe, T. Adachi, Y. Koike, M. Nohara, H. Takagi, C. Proust, and N. E. Hussey, Science 323, 603 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.National Research Centre Kurchatov InstituteMoscowRussia
  2. 2.McDonnell Center for the Space Sciences & Department of PhysicsWashington UniversitySt. LouisUSA
  3. 3.Centro de Investigação em Matema’tica e AplicaçõesUniversity of MadeiraFunchalPortugal
  4. 4.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations