Advertisement

Dynamics of Particles Trapped by Dissipative Solitons

  • D. A. Dolinina
  • A. S. Shalin
  • A. V. YulinEmail author
Article
  • 1 Downloads

Abstract

Optomechanical manipulation of nanoparticles enabling ultimate control over their 3D motion is nowadays one of the most highly demanded links between optics, biology, medicine, microfluidics, etc., paving the way for a plethora of emerging applications from drug delivery to living cells, to new methods of nanofabrication. In this Letter we provide novel type of optical manipulation driven by nonlinear effects and laying on the interface between classical optomechanics and non-linear optics. The formation, stability and the dynamics of optical dissipative solitary waves interacting with dielectric nanoparticles are studied theoretically. A mathematical model describing the optical field and the particles are proposed and the stationary solutions in the form of localized optical waves interacting with nanoparticles are found, their bifurctations are studied. It is shown that the linear stability of the solitary waves is affected by the particles but there are regions in the parameter space where the solitons remain stable. The dynamics of the solitary waves with trapped nanoparticles under the action of the inhomogeneous pump is also studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, Light: Science and Applications 6, e16258 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    N. Kostina, M. Petrov, A. Ivinskaya, S. Sukhov, A. Bogdanov, I. Toftul, M. Nieto-Vesperinas, P. Ginzburg, and A. Shalin, Phys. Rev. B 99, 125416 (2019).ADSCrossRefGoogle Scholar
  4. 4.
    D. B. Ruffner and D. G. Grier, Phys. Rev. Lett. 109, 163903 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, Laser Photonics Rev. 10, 116 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    A. S. Shalin and S. V. Sukhov, Plasmonics 8, 625 (2013).CrossRefGoogle Scholar
  7. 7.
    S. Sukhov, A. Shalin, D. Haefner, and A. Dogariu, Opt. Express 23, 247 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    A. Ivinskaya, N. Kostina, A. Proskurin, M. I. Petrov, A. A. Bogdanov, S. Sukhov, A. V. Krasavin, A. Karabchevsky, A. S. Shalin, and P. Ginzburg, ACS Photonics 5, 4371 (2018).CrossRefGoogle Scholar
  9. 9.
    L. Yue, O. V. Minin, Z. Wang, J. N. Monks, A. S. Shalin, and I. V. Minin, Opt. Lett. 43, 4 (2018).Google Scholar
  10. 10.
    J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, Annu. Rev. Biochem. 77, 205 (2008).CrossRefGoogle Scholar
  11. 11.
    F. M. Fazal and S. M. Block, Nature Photon. 5, 318 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    H. T. Li, D. J. Zhou, H. Browne, and D. Klenerman, J. Am. Chem. Soc. 128, 5711 (2006).CrossRefGoogle Scholar
  13. 13.
    R. Agarwal, K. Ladavac, Y. Roichman, G. H. Yu, C. M. Lieber, and D. G. Grier, Opt. Express 13, 22 (2005).CrossRefGoogle Scholar
  14. 14.
    A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 5 (1986).CrossRefGoogle Scholar
  15. 15.
    S. Barbay, Y. Ménesguen, X. Hachair, L. Leroy, I. Sanges, and R. Kuszelewicz, Opt. Lett. 31, 10 (2006).CrossRefGoogle Scholar
  16. 16.
    X. Hachair, S. Barland, L. Furfano, M. Giudici, S. Balle, and J. R. Tredicce, Phys. Rev. A 69, 043817 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Odder-shede, Nano Lett. 5, 10 (2005).CrossRefGoogle Scholar
  18. 18.
    S. Nader, S. Reihani, and L. B. Oddershede, Opt. Lett. 32, 14 (2007).CrossRefGoogle Scholar
  19. 19.
    G. Pesce, A. Sasso, and S. Fusco, Rev. Sci. Instrum. 76, 115105 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    A. Szöke, V. Daneu, J. Goldhar, and N. A. Kurnit, Appl. Phys. Lett. 15, 376 (1969).ADSCrossRefGoogle Scholar
  21. 21.
    W. J. Firth and A. J. Scroggie, Phys. Rev. Lett. 76, 10 (1996).CrossRefGoogle Scholar
  22. 22.
    N. N. Rosanov and G. V. Khodova, Opt. Soc. Am. B 7, 6 (1990).CrossRefGoogle Scholar
  23. 23.
    H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, Phys. Rev. Lett. 36, 19 (1976).Google Scholar
  24. 24.
    W. J. Firth and C. O. Weiss, Opt. Photonics News 13, 2 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.ITMO UniversitySaint-PetersburgRussia

Personalised recommendations