Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Phase Transformations in Copper—Tin Solid Solutions at High-Pressure Torsion

  • 11 Accesses

Abstract

Phase transformations of some Hume-Rothery phases (electron compounds) to others in a copper-tin system subjected to high-pressure torsion were detected in our previous work [B.B. Straumal et al., JETP Lett. 100, 376 (2014)]. In particular, the torsion of the ζ + ε phase mixture at high pressure led to the formation of the δ + ε phase mixture, as after long-term annealing in the temperature interval Teff = 350–589°C. In this work, it has been shown that the high-pressure torsion of α-solid solutions of tin in copper results in the final stable solid solution whose composition is independent of the composition of the initial α phase before high-pressure torsion. The final composition is the same as after long-term annealing at the temperature Teff = (420 ± 10)°C. The rate of high-pressure torsion-induced mass transfer is several orders of magnitude higher than the rate of conventional thermal diffusion at the treatment temperature THPT and is close to values at Teff. This occurs because high-pressure torsion increases the concentration of lattice defects and this increase is in turn equivalent to an increase in the temperature.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    X. Sauvage, A. Chbihi, and X. Quelennec, J. Phys. Conf. Ser. 240, 012003 (2010).

  2. 2.

    B. B. Straumal, A. R. Kilmametov, A. Korneva, A. A. Mazilkin, P. B. Straumal, P. Zieba, and B. Baretzky, J. Alloys Compd. 707, 20 (2017).

  3. 3.

    S. K. Pabi, J. Joardar, and B. S. Murty, Proc. Indian Natl. Sci. Acad. A 67, 1 (2001).

  4. 4.

    B. B. Straumal, A. R. Kilmametov, Yu. Ivanisenko, A. A. Mazilkin, O. A. Kogtenkova, L. Kurmanaeva, A. Korneva, P. Zieba, and B. Baretzky, Int. J. Mater. Res. 106, 657 (2015).

  5. 5.

    V. I. Levitas and O. M. Zarechnyy, Phys. Rev. B 82, 174123 (2010).

  6. 6.

    M. Javanbakht and V. I. Levitas, Phys. Rev. B 94, 214104 (2016).

  7. 7.

    V. I. Levitas, Mater. Trans. 60, 1294 (2019).

  8. 8.

    S. D. Prokoshkin, I. Yu. Khmelevskaya, S. V. Dobatkin, I. B. Trubitsyna, E. V. Tatyanin, V. V. Stolyarov, and E. A. Prokofiev, Acta Mater. 53, 2703 (2005).

  9. 9.

    X. Sauvage, L. Renaud, B. Deconihout, D. Blavette, D. H. Ping, and K. Hono, Acta Mater. 49, 389 (2001).

  10. 10.

    A. A. Mazilkin, G. E. Abrosimova, S. G. Protasova, B. B. Straumal, G. Schütz, S. V. Dobatkin, and A. S. Bakai, J. Mater. Sci. 46, 4336 (2011).

  11. 11.

    V. I. Levitas, Phys. Rev. Lett. 95, 075701 (2005).

  12. 12.

    V. I. Levitas, Y. Ma, E. Selvi, J. Wu, and J. A. Patten, Phys. Rev. B 85, 054114 (2012).

  13. 13.

    A. M. Glezer, M. R. Plotnikova, A. V. Shalimova, and S. V. Dobatkin, Bull. Russ. Acad. Sci.: Phys. 73, 1233 (2009).

  14. 14.

    S. Hóbor, Á. Révész, A. P. Zhilyaev, and Zs. Kovacs, Rev. Adv. Mater. Sci. 18, 590 (2008).

  15. 15.

    B. B. Straumal, B. Baretzky, A. A. Mazilkin, F. Phillipp, O. A. Kogtenkova, M. N. Volkov, and R. Z. Valiev, Acta Mater. 52, 4469 (2004).

  16. 16.

    B. B. Straumal, S. G. Protasova, A. A. Mazilkin, E. Rabkin, D. Goll, G. Schütz, B. Baretzky, and R. Valiev, J. Mater. Sci. 47, 360 (2012).

  17. 17.

    B. B. Straumal, A. R. Kilmametov, Yu. O. Kucheev, L. Kurmanaeva, Yu. Ivanisenko, B. Baretzky, A. Korneva, P. Zieba, and D. A. Molodov, Mater. Lett. 118, 111 (2014).

  18. 18.

    B. B. Straumal, A. A. Mazilkin, B. Baretzky, E. Rabkin, and R. Z. Valiev, Mater. Trans. 53, 63 (2012).

  19. 19.

    Y. Ivanisenko, I. MacLaren, X. Sauvage, R. Z. Valiev, and H.-J. Fecht, Acta Mater. 54, 1659 (2006).

  20. 20.

    M. T. Pérez-Prado and A. P. Zhilyaev, Phys. Rev. Lett. 102, 175504 (2009).

  21. 21.

    K. Edalati, E. Matsubara, and Z. Horita, Metall. Mater. Trans. A 40, 2079 (2009).

  22. 22.

    Y. Ivanisenko, A. Kilmametov, H. Roesner, and R. Valiev, Int. J. Mater. Res. 99, 36 (2008).

  23. 23.

    B. Feng and V. I. Levitas, Mater. Sci. Eng. A 680, 130 (2017).

  24. 24.

    B. Feng, V. I. Levitas, and M. Kamrani, Mater. Sci. Eng. A 731, 623 (2018).

  25. 25.

    B. Feng, V. I. Levitas, and W. Li, Int. J. Plast. 113, 236 (2019).

  26. 26.

    B. B. Straumal, A. R. Kilmametov, G. A. Lopez, I. López-Ferreño, M. L. No, J. San Juan, H. Hahn, and B. Baretzky, Acta Mater. 125, 274 (2017).

  27. 27.

    T. Kim, G. Ouyang, J. D. Poplawsky, M. J. Kramer, V. I. Levitas, J. Cui, and L. Zhou, J. Alloys Compd. 808, 151743 (2019).

  28. 28.

    B. B. Straumal, A. R. Kilmametov, Yu. O. Kucheev, K. I. Kolesnikova, A. Korneva, P. Zieba, and B. Baretzky, JETP Lett. 100, 376 (2014).

  29. 29.

    V. F. Degtyareva and Yu. A. Skakov, Sov. Phys. Crystallogr. 21, 222 (1976).

  30. 30.

    Ya. S. Umanskii and Yu. A. Skakov, Physics of Metals: Atomic Structure of Metals and Alloys (Metallurgiya, Moscow, 1978) [in Russian].

  31. 31.

    S. Fürtauer, D. Li, D. Cupid, and H. Flandorfer, Intermetallics 34, 142 (2013).

  32. 32.

    K. Bryla, J. Morgiel, M. Faryna, K. Edalati, and Z. Horita, Mater. Lett. 212, 323 (2018).

  33. 33.

    K. Edalati, D. J. Lee, T. Nagaoka, M. Arita, H. S. Kim, Z. Horita, and R. Pippan, Mater. Trans. 57, 533 (2016).

  34. 34.

    K. Edalati, Z. Horita, T. Furuta, and S. Kuramoto, Mater. Sci. Eng. A 559, 506 (2013).

  35. 35.

    M. Wojdyr, J. Appl. Crystallogr. 43, 1126 (2010).

  36. 36.

    E. A. Owen and J. Iball, J. Inst. Met. 57, 267 (1935).

  37. 37.

    C. Haase and F. Pawlek, Z. Metallkd. 28, 73 (1936).

  38. 38.

    S. T. Konobeevskii and W. P. Tarrassova, Acta Physicochim. U.R.S.S. 6, 781 (1937).

  39. 39.

    A. P. Gulyaev and E. E Trusova, Zh. Tekh. Fiz. 20, 66 (1950).

  40. 40.

    A. F. Anderson, Trans. Met. Soc. AIME 212, 259 (1958).

  41. 41.

    L. Vegard, Z. Phys. 5, 17 (1921).

  42. 42.

    L. von Bertalanffy, Science (Washington, DC, U. S.) 111, 23 (1950).

  43. 43.

    S. Fujikawa and K. I. Hirano, in Proceedings of 5th Yamada Conference on Point Defects, Defect Interactions in Metals, Ed. by J. I. Takamura, M. Doyama, and M. Kiritani (Univ. Tokyo Press, Tokyo, 1982), p. 554.

  44. 44.

    V. A. Gorbachev, S. M. Klotsman, Ya. A. Rabovskiy, V. K. Talinskiy, and A. N. Timofeyev, Sov. Phys. Met. Metallogr. 35, 226 (1973).

  45. 45.

    B. B. Straumal, L. M. Klinger, and L. S. Shvindlerman, Scr. Met. 17, 275 (1983).

  46. 46.

    D. A. Molodov, B. B. Straumal, and L. S. Shvindlerman, Scr. Met. 18, 207 (1984).

  47. 47.

    M. Kamrani, V. I. Levitas, and B. Feng, Mater. Sci. Eng. A 705, 219 (2017).

  48. 48.

    V. I. Levitas and A. M. Roy, Phys. Rev. B 91, 174109 (2015).

  49. 49.

    V. I. Levitas, Int. J. Plast. 106, 164 (2018).

Download references

Funding

This work was performed in part within the state assignment for the Institute of Solid State Physics, Russian Academy of Sciences, and the Chernogolovka Research Center, Russian Academy of Sciences, and was supported by the Russian Foundation for Basic Research (project no. 18-33-00473) and Narodowe Centrum Nauki of Poland (project no. OPUS 2014/13/B/ST8/04247).

Author information

Correspondence to B. B. Straumal.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 9, pp. 622–627.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Straumal, B.B., Kilmametov, A.R., Mazilkin, I.A. et al. Phase Transformations in Copper—Tin Solid Solutions at High-Pressure Torsion. Jetp Lett. 110, 624–628 (2019). https://doi.org/10.1134/S0021364019210112

Download citation