JETP Letters

, Volume 110, Issue 6, pp 387–393 | Cite as

Catalysis of the 〈b̄b〉 Condensate in the Composite Higgs Model

  • A. A. OsipovEmail author
  • M. M. KhalifaEmail author
Fields, Particles, and Nuclei


The problem of appearance of quark masses through the mechanism of dynamical breaking of the SU(2)L × U(1)R symmetry of electroweak interactions has been studied within a model with local four-quark interactions, which result in the formation of a 〈t̄t〉 condensate and composite Higgs bosons. We show that this process catalyzes b̄b condensation in the presence of an arbitrarily weak’ t Hooft interaction. The spectrum of composite scalar excitations has been calculated. An expression obtained for the mass of a standard Higgs boson significantly improves the agreement of the top-condensation model with the experiment. It has been shown that the standard Higgs boson under the Nambu sum rules should have three partners with the same mass of about 245 GeV and different electric charges. The possibility of a transition of the system to a chiral symmetric phase, which is accompanied by the corresponding change in the spectrum of elementary excitations, is discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



A.A. Osipov is grateful to C.T. Hill for interest in the work, support, and stimulating discussions and to H. Terazawa for valuable correspondence.


A.A. Osipov acknowledges the support of the European Cooperation in Science and Technology (program COST Action CA16201).


  1. 1.
    Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Nambu and G. Jona-Lasinio, Phys. Rev. 124, 246 (1961).ADSCrossRefGoogle Scholar
  3. 3.
    V. G. Vaks and A. I. Larkin, Sov. Phys. JETP 13, 192 (1961).Google Scholar
  4. 4.
    B. A. Arbuzov, A. N. Tavkhelidze, and R. N. Faustov, Sov. Phys. Dokl. 6, 598 (1961).ADSGoogle Scholar
  5. 5.
    S. Weinberg, Phys. Rev. 13, 974 (1976).ADSGoogle Scholar
  6. 6.
    S. Weinberg, Phys. Rev. 19, 1277 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    L. Susskind, Phys. Rev. D 20, 2619 (1979).ADSCrossRefGoogle Scholar
  8. 8.
    A. Belyaev, A. Coupe, N. Evans, D. Locke, and M. Scott, Phys. Rev. D 99, 095006 (2019).ADSCrossRefGoogle Scholar
  9. 9.
    S. Dawson, C. Englert, and T. Plehn, Phys. Rep. 816, 1 (2019).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    C. T. Hill and E. H. Simmons, arXiv:hep-ph/0203079 (2003).Google Scholar
  11. 11.
    K. Yamawaki, arXiv:1605.01951 [hep-ph] (2016).Google Scholar
  12. 12.
    J. M. No, V. Sanz, and J. Setford, Phys. Rev. D 93, 095010 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    C. T. Hill, P. A. N. Machado, A. E. Thomsen, and J. Turner, arXiv:1904.04257 [hep-ph] (2019).Google Scholar
  14. 14.
    H. Terazawa, Quark Matter: From Subquarks to the Universe (Nova Science, New York, 2018).Google Scholar
  15. 15.
    H. Terazawa, Y. Chikashige, and K. Akama, Phys. Rev. D 15, 480 (1977).ADSCrossRefGoogle Scholar
  16. 16.
    H. Terazawa, Phys. Rev. D 22, 184 (1980).ADSCrossRefGoogle Scholar
  17. 17.
    H. Terazawa, Phys. Rev. D 22, 2921 (1980).ADSCrossRefGoogle Scholar
  18. 18.
    H. Terazawa, Phys. Rev. D 41, 3541(E) (1990).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Nambu, in Proceedings of the 1988 International Workshop on New Trends in Strong Coupling Gauge Theories, Nagoya, Japan, Aug. 24–27, 1988, Ed. by M. Bando, T. Muta, and K. Yamawaki (World Scientific, Singapore, 1989); EFI Report No. 89-08 (1989, unpublished).Google Scholar
  20. 20.
    V. A. Miransky, M. Tanabashi, and K. Yamawaki, Phys. Lett. B 221, 177 (1989).ADSCrossRefGoogle Scholar
  21. 21.
    V. A. Miransky, M. Tanabashi, and K. Yamawaki, Mod. Phys. Lett. A 4, 1043 (1989).ADSCrossRefGoogle Scholar
  22. 22.
    W. J. Marciano, Phys. Rev. Lett. 62, 2793 (1989).ADSCrossRefGoogle Scholar
  23. 23.
    W. J. Marciano, Phys. Rev. D 41, 219 (1990).ADSCrossRefGoogle Scholar
  24. 24.
    W. A. Bardeen, C. T. Hill, and M. Lindner, Phys. Rev. D 41, 1647 (1990).ADSCrossRefGoogle Scholar
  25. 25.
    V. A. Miransky, Int. J. Mod. Phys. A 6, 1641 (1991).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    B. Pendleton and G. G. Ross, Phys. Lett. B 98, 291 (1981).ADSCrossRefGoogle Scholar
  27. 27.
    C. T. Hill, Phys. Rev. D 24, 691 (1981).ADSCrossRefGoogle Scholar
  28. 28.
    C. T. Hill, C. N. Leung, and S. Rao, Nucl. Phys. B 262, 517 (1985).ADSCrossRefGoogle Scholar
  29. 29.
    K. Yamawaki, arXiv:1511.06883 (2015).Google Scholar
  30. 30.
    Y. Nambu, Phys. D (Amsterdam, Neth.) 15, 147 (1985).ADSCrossRefGoogle Scholar
  31. 31.
    G. E. Volovik and M. A. Zubkov, Phys. Rev. D 87, 075016 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    G. E. Volovik and M. A. Zubkov, JETP Lett. 97, 301 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    S. P. Klevansky and R. H. Lemmer, Phys. Rev. D 39, 3478 (1989).ADSCrossRefGoogle Scholar
  34. 34.
    K. G. Klimenko, Theor. Math. Phys. 89, 211 (1991).Google Scholar
  35. 35.
    K. G. Klimenko, Theor. Math. Phys. 90, 3 (1992).CrossRefGoogle Scholar
  36. 36.
    A. S. Vshivtsev, K. G. Klimenko, and B. V. Magnitsky, Theor. Math. Phys. 106, 390 (1996).CrossRefGoogle Scholar
  37. 37.
    I. V. Krive and S. A. Naftulin, Sov. J. Nucl. Phys. 54, 897 (1991).Google Scholar
  38. 38.
    I. V. Krive and S. A. Naftulin, Phys. Rev. D 46, 2737 (1992).ADSCrossRefGoogle Scholar
  39. 39.
    M. S. Carena and C. E. M. Wagner, Phys. Lett. B 285, 277 (1992).ADSCrossRefGoogle Scholar
  40. 40.
    M. Hashimoto, Phys. Lett. B 441, 389 (1998).ADSCrossRefGoogle Scholar
  41. 41.
    G. Cvetic, Rev. Mod. Phys. 71, 513 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow regionRussia
  2. 2.Moscow Institute of Physics and Technology (National Research University)Dolgoprudnyi, Moscow regionRussia
  3. 3.Department of PhysicsAl-Azhar UniversityCairoEgypt

Personalised recommendations